2018 Dunnville WWTP Annual Report

Prepared for: Zafar Bhatti, MECP West Central Region, Guelph

Prepared by: Jessica Ignaszak, Water and Wastewater Technologist, Haldimand County

Date: February 25, 2019

Copy to: David Kohli, Project Manager, Veolia Water Canada

Jim Matthews, Compliance Supervisor, Haldimand County

Tyler Kelly, MECP Inspector, Hamilton District Office

1. Background

The Dunnville WWTP is owned by Haldimand County and operated by Veolia Water. The WWTP was initially operated under the amended ECA # 7329-9YUJJV until March 10, 2017 when the newly Amended ECA # 9333-AHNP7D was issued. The WWTP has a nominal design flow of 7,728 m³/d. The plant is a parallel train extended aeration facility with effluent chlorination for disinfection and de-chlorination prior to discharge to receiving water. The plant receives hauled sewage (holding tank, septic tank and portable toilet wastes) and landfill leachate. Treated effluent is discharged to the Grand River. Sludge produced is aerobically treated and stored in on-site lagoons. From the storage lagoons, the biosolids are typically land applied and if required, transferred to the Townsend biosolids storage facility for winter storage.

2. Per Capita Flows and Loadings

Table 1 – Dunnville Per Capita Flows and Loadings											
Parameter	2017	2018									
Population	5,759	5,759									
Average Daily Influent Flow (m³/d)	4,288	4,439									
Peak Daily Influent Flow (m³/d)	16,803	20,536									
Average Influent BOD ₅ (mg/L)	246	231									
Average Influent TSS (mg/L)	190	190									
Average Influent TKN (mg/L)	32	33									
Average Influent TP (mg/L)	4.4	4.4									
Per Capita Flows and Loadings											
Parameter	2017	2018	Typical								
Per Capita Wastewater Flow (L/person/day)	745	771	350 – 500* 332**								
Per Capita BOD₅ Loading (g/person/day)	183	180	80*								
Per Capita TSS Loading (g/person/day)	142	148	90*								
Per Capita TKN Loading (g/person/day)	24	25	13*								
	Ratios										
Peak Day / Annual Average Flow	3.9	4.6	2.0 – 3.0								
Influent TSS/BOD₅	0.8	0.8	0.8 – 1.2								
Influent TKN/BOD ₅	0.1	0.1	0.1 – 0.2								
			-								

Notes:

^{*} Results are for typical residential wastewater and are identified in Metcalf and Eddy, Wastewater Treatment and Reuse (4th Edition).

^{**}Grand River Conservation Authority, "2017 Watershed Overview of Wastewater Treatment Plant Performance", July, 2018

- The 2018 annual average daily flow of 4,439m³/d represents a modest increase of 3.5% compared to 2017 (4,288 m3/d) and is 57% of the nominal design flow;
- Peak day flow is very high as a result of severe rain events in 2018;
- The plant experiences high per capita BOD₅, TSS and TKN loading. This is probably caused by hauled waste, leachate and industrial contributions;
- High per capita wastewater flows indicates high inflow and infiltration. 771 L/p/d is significantly greater than the
 typical range of 350-500 L/p/d and GRCA average of 332 L/p/d;
- Influent TSS/BOD₅ and TKN/BOD₅ ratios are within typical values.

3. Performance

Effluent Concentration Compliance

Table 2 is a summary of the effluent quality objectives and limits identified in the ECA # 9333-AHNP7D.

Table 2 – Summary of ECA Objectives and Limits for Effluent Quality											
Parameter	Objectives (mg/L)	Monthly Limits (mg/L)	Annual Average Loading Limits (kg/d)								
cBOD ₅	15	25	193								
Total Suspended Solids (TSS)	15	25	193								
Total Phosphorous (TP)	0.5	1.0	7.7								
Total Ammonia Nitrogen (Dec. – Apr.)	10	-	-								
Total Ammonia Nitrogen (May – Nov.)	5	-	-								
Total Chlorine Residual	Non-Detect	0.02	-								
E. Coli.	150 CFU/100ml	200 CFU / 100 mL	-								
рН	6.5 – 8.5	6.0 - 9.5	-								
Note: There were no Ammonia Objectives Pr	ior to March 10, 2017.										

Concentration compliance for all parameters identified in Table 2 (except E. Coli. and pH) are based on monthly averages of samples taken weekly. Compliance for E. Coli is based on a monthly Geometric Mean Density of all samples, while pH must be maintained within the range at all times. The loading compliance for all parameters identified in Table 2 is based on annual averages. A summary of all monthly data is included in this report in Table 8.

Haldimand County is also committed to achieving the Grand River Conservation Authority (GRCA) final effluent targets for total phosphorous (TP) and total ammonia nitrogen (TAN). The targets are shown for secondary treatment plants in Table 3 below.

Table 3: GRCA Secondary Treatment Targets for Effluent discharging into the Grand River								
Parameter	Final Target (mg/L)							
Total Effluent Phosphorous	0.30							
Total Ammonia Nitrogen								
Summer	1.0							
Winter	2.0							

The average concentrations for cBOD₅ compared against the objective and limit are shown in Figure 1.

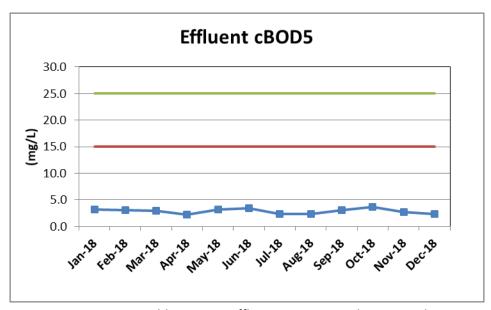


Figure 1 – Monthly Average Effluent cBOD₅ Compliance Graph

Comments:

• The monthly average effluent cBOD₅ met the compliance limit of 25 mg/L and objective of 15 mg/L in all 12 months.

The average concentrations for TSS compared against the objective and limit are shown in Figure 2.

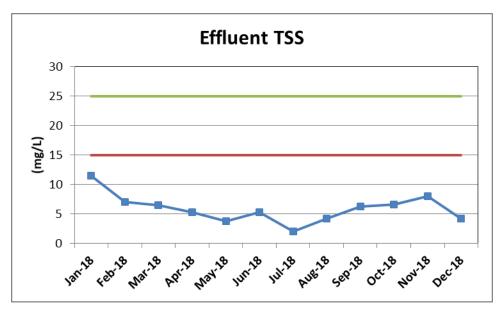


Figure 2 – Monthly Average Effluent TSS Compliance Graph

- The monthly average effluent TSS met the compliance limit of 25 mg/L and objective of 15 mg/L in all 12 months;
- The effluent is essentially free of solids and visual observations indicate that the effluent is free of oils.

The average concentrations for TP compared against the objective, limit and GRCA final target are shown in Figure 3.

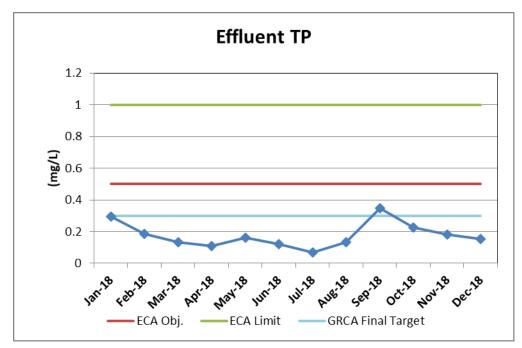


Figure 3 – Monthly Average Effluent TP Compliance Graph

Comments:

- The monthly average effluent TP met the compliance limit of 1.0 mg/L and objective of 0.5 mg/L in all 12 months;
- The GRCA final TP target of 0.30 mg/L was achieved in 11 of 12 months.

The monthly geometric mean density for E. Coli compared against the limit are shown in Figure 4.

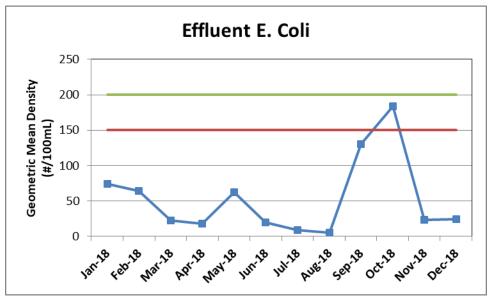


Figure 4 – Monthly Geometric Mean for E. Coli Compliance Graph

- Monthly E. Coli Geometric Mean Density exceeded the objective in October and achieved the compliance limit in all 12 months;
- The increase over September and October was due to build up of solids in clarifier changing the demand for chlorine addition. This is due to the temporary return activated sludge (RAS) system being put in place during the on-going construction activity at the facility.

Effluent pH results compared against the objectives and limits are shown in Figure 5.

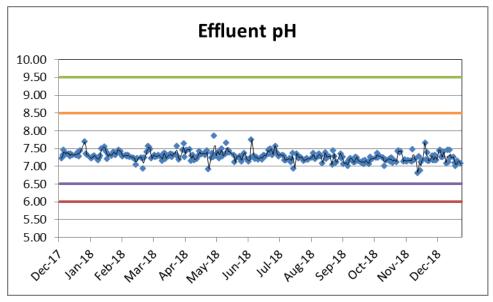


Figure 5 – Effluent pH Compliance Graph

Comments:

- pH Objectives were added in March of 2017 upon revisions to the ECA;
- The daily pH levels met the objectives and limits in 2018.

The monthly average concentration for total ammonia nitrogen compared against the objective and GRCA interim and final targets is shown in Figure 6.

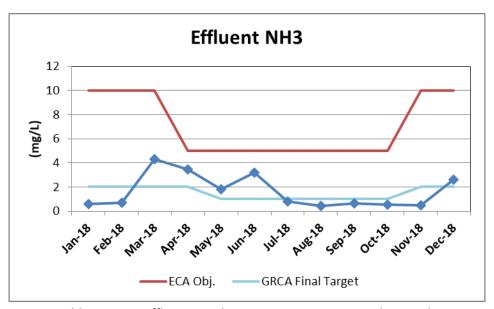


Figure 6 – Monthly Average Effluent Total Ammonia Nitrogen Compliance Objective Graph

Comments:

- The monthly average ammonia met the ECA objective in all 12 months;
- The GRCA final target of 2.0 mg/L (November to April) and 1.0 mg/L (May to October) was achieved in 7 of 12 months.

Effluent total chlorine residuals are compared against the compliance limit in Figure 7.

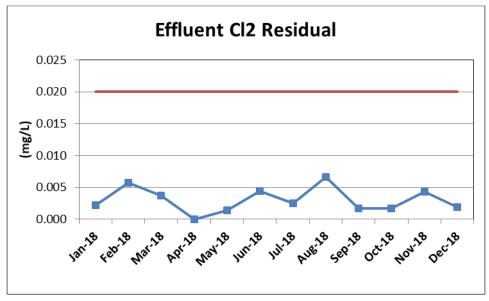


Figure 7 – Effluent Total Chlorine Residual Compliance Graph

- The monthly average total chlorine residual results were below the limit in all 12 months;
- Accurately measuring low level concentrations is difficult due to sampling location and limitations with the
 existing analytical equipment.

The monthly average flows compared against design is shown in Figure 8.

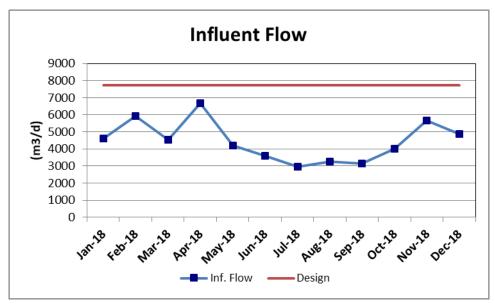


Figure 8 – Monthly Average Flow Compliance Graph

Comments:

The monthly average flows were below design flow of 7,728 m³/d in all 12 months.

Effluent Loading Compliance

A summary of the annual average effluent loading compliance is displayed in Table 4.

Table 4 – Summary of Annual Average Effluent Loading Compliance										
Parameter	Annual Average Loading	Annual Average Loading Limit								
cBOD₅ Loading	14.6 kg/d	193 kg/d								
TSS Loading	31.6 kg/d	193 kg/d								
TP Loading	0.90 kg/d	8.0 kg/d								

Comments:

• The annual average loading for cBOD₅, TSS and TP met ECA loading limits in 2018.

4. Non-Regulated Effluent Sampling

The Dunnville WWTP is also required to analyze the effluent for temperature and un-ionized ammonia. The following are the results collected.

The daily effluent temperature results are displayed in Figure 9.

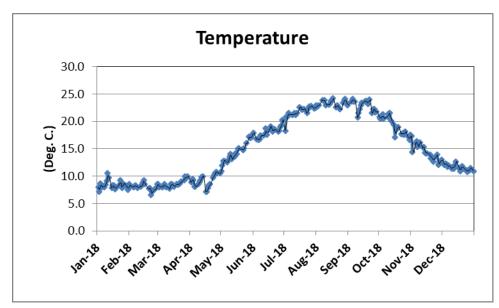


Figure 9 - Daily effluent temperature results

Comments:

• Water temperature ranged from approximately 6.6°C in March to 24.2°C in September.

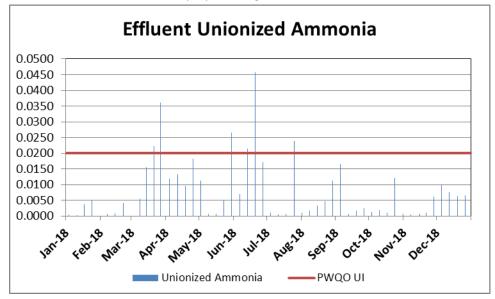


Figure 10 – Weekly effluent un-ionized ammonia results

Comments:

- There were 6 instances where the effluent un-ionized ammonia was above the provincial water quality objective in 2018.
- This was a result of process upsets through construction activities going at the facility.

5. Operational Issues

• Operators continue to experience frequent fouling problems with RAS pumps and the digester jet mixing pump due to lack of preliminary treatment (screening and grit removal) – on-going capital upgrades will improve this situation.

6. Sludge Generation

Sludge Production

Reported sludge being removed from the treatment plant is compared to projected sludge that the plant would be expected to produce. If the difference between the two sludge masses (kg/d) is within \pm 15%, then the sludge data is probably accurate. The sludge accountability is reported in Table 5.

Table 5 – Summary of Sludge Accountability												
Reported Sluc	lge (kg/d)	Projected S	ludge (kg/d)	Accountability								
Intentional Wasting	756	Biological Sludge	872	11%								
Unintentional	26	Chemical Sludge	6									
Wasting												
Total Reported Sludge	782	Total Projected	878									
		Sludge										

Comments:

• The sludge accountability calculation closed within <u>+</u> 15% (11%). Therefore, the reported data probably represents the true performance of the facility.

Biosolids Storage and Removal

Table 6 identifies a monthly summary of the volume of biosolids transferred from the digesters to the on-site storage lagoons at the Dunnville WWTP and then offsite.

Table 6 – M	Table 6 – Monthly Summary of Biosolids Removed														
Month	Volume of Biosolids to On- Site Lagoons (m³)		Nonth Volun Biosolids Site La		Concer	Solids stration g/L)	Volum to To	Biosolids Volume Hauled to Townsend Lagoons (m³)		Biosolids Volume Removed for Land Application (m³)		Hauled Average Total Solids Concentration (mg/L)		Hauled Biosolids Generated (kg)	
	2017	2018	2017	2018	2017	2018	2017	2018	2017	2018	2017	2018			
January	686	1,568	10,091	15,125											
February	1,096	973	17,136	13,100											
March	1,262	1,902	15,705	14,112											
April	1,643	1,915	16,194	24,000		1,165				23,170		26,993			
May	1,398	2,078	14,000	16,500		675		3,498		17,700/		11,948/			
			40.440	44.057			4.000			41,979		146,843			
June	2,121	2,185	16,110	11,057			1,923		40,135		77,180				
July	1,748	1,196	13,048	20,214											
August	1,611	1,339	18,095	15,110											
September	1,739	1,080	12,005	15,132			3,013	1,860	28,000	30,542	84,364	56,796			
October	1,302	1,193	14,983	19,169											

November	1,340	1,052	17,065	17,224								
December	1,046	1,050	13,065	20,188		2,340				27,216		63,685
Total	16,992	17,531			N/A	4,180	4,462	5,358			161,544	306,265
Average			14,791	16,774					34,068	29,167		

- Biosolids mass to on-site lagoons was 327,613 kg in 2018 based on the total volume to on-site lagoons and the
 average total solids concentration. The mass hauled from the lagoons was 21,348 kg less than the mass to the
 on-site lagoons;
- The mass of solids removed in 2018 is 144,721 kg more than in 2017. This is due to not cleaning out the lagoons
 in the Fall of 2017 and completely cleaning them out in the Fall of 2018;
- For 2019 it is estimated that the mass of biosolids generated will be comparable to 2018.

7. Hauled Waste

 Volumetric requirements for daily hauled leachate met compliance in 2018. Table 8 displays the quarterly leachate sampling results for 2018.

8. Biosolids Removal

Biosolids were applied to land in May and September to DL3, HN1315 and HN1316.

9. Facility Activities in 2018

- On-going construction activities
 - New pre-treatment system for raw sewage screening and grit removal;
 - Return and waste sludge system upgrades;
 - New waste sludge thickening tanks;
- New administration building with lab, office, meeting room, ladies and men washrooms and new motor control
 centre.
- Improved pump control systems at Broad Street Pumping Station to increase reliability

10. Planned Activities for 2019

- Complete the construction activities initiated in 2017;
- SCADA replacements;
- Continue working with industry to meet Sewer Use By-Law compliance.

11. Bypasses, Spills and Overflows

• There were no reported bypass events in 2018.

12. Public Complaints

There were no reported complaints in 2018.

13. Monthly Average Effluent Data Summary

Table 7 displays a summary of all monthly average effluent data

14. Calibration Reports

See attached

15. Maintenance Activities

Routine preventative maintenance was performed on various plant and pumping station equipment during the reporting period. This includes tasks such as:

- the lubrication of applicable bearings and/or gearboxes on various equipment;
- the removal, inspection and servicing of numerous submersible pumps;
- the inspection and servicing of chemical feed systems;
- the inspection and servicing of various HVAC systems;
- the inspection, testing and servicing of back-up generator systems;
- See attached for complete annual maintenance report.

	Table 7 – Summary of Monthly Average Effluent Data															
	Plant Flow	СВОD	C of A CBOD Limit	CBOD Loading	C of A CBOD Load Limit	TSS	C of A TSS Limit	TSS Loading	C of A TSS Load Limit	Phosphorous	C of A TP Limit	Phosphorous Loading	C of A TP Load Limit	Ammonia	E. Coli	C of A E. Coli Limit
Month	(m³/d)	(mg/L)	(mg/L)	(kg)	(kg)	(mg/L)	(mg/L)	(kg)	(kg)	(mg/L)	(mg/L)	(kg)	(kg)	(mg/L)	(#/100mL)	(#/100mL)
Jan-18	4597	3.2	25.0	14.7	193.0	11.5	25.0	43.4	193.0	0.30	1.00	0.89	8.0	0.58	75	200
Feb-18	5929	3.1	25.0	18.4	193.0	7	25.0	58.7	193.0	0.19	1.00	0.93	8.0	0.67	64	200
Mar-18	4534	2.9	25.0	13.1	193.0	6.5	25.0	43.5	193.0	0.13	1.00	0.69	8.0	4.31	23	200
Apr-18	6666	2.3	25.0	15.2	193.0	5.25	25.0	55.1	193.0	0.11	1.00	1.03	8.0	3.44	18	200
May-18	4213	3.1	25.0	13.2	193.0	3.8	25.0	30.1	193.0	0.16	1.00	0.99	8.0	1.83	63	200
Jun-18	3601	3.4	25.0	12.2	193.0	5.25	25.0	42.8	193.0	0.12	1.00	0.94	8.0	3.21	20	200
Jul-18	2968	2.4	25.0	7.1	193.0	2	25.0	16.8	193.0	0.07	1.00	0.44	8.0	0.80	9	200
Aug-18	3256	2.3	25.0	7.4	193.0	4.2	25.0	23.3	193.0	0.13	1.00	0.48	8.0	0.45	6	200
Sep-18	3146	3.0	25.0	9.5	193.0	6.25	25.0	35.6	193.0	0.35	1.00	0.92	8.0	0.62	130	200
Oct-18	3999	3.7	25.0	14.6	193.0	6.6	25.0	44.4	193.0	0.23	1.00	1.01	8.0	0.54	184	200
Nov-18	5658	2.7	25.0	15.3	193.0	8	25.0	53.0	193.0	0.18	1.00	0.93	8.0	0.47	23	200
Dec-18	4890	2.4	25.0	11.7	193.0	4.25	25.0	33.0	193.0	0.15	1.00	0.59	8.0	2.58	24	200
Average	4455	2.9		12.7		5.9		40		0.20		0.8		1.6	53	

	Table 8 – Summary of Quarterly Leachate Sampling Results														
	CBOD TSS TKN TKN							Manganese	Potassium	Strontium	Bis (2-ethylhexyl) Phthalate				
Month	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)				
Jan-09-18	20.8	28.00	0.82	97.4	2.68	0.007	75.8	0.1	134	10.8	0.006				
Mar-26-18	22.7	34.00	0.31	122	3.72	0.007	98.8	0.24	128	14.3	0.005				
Jul-05-18	21.3	30.00	0.77	134	3.29	0.007	101.0	0.18	142	16.8	0.005				
Oct-01-18	25.5	35.00	0.87	160	4.12	0.007	110	0.21	180	17.9	0.005				
Average	22.58	31.75	0.69	128.4	3.45	0.007	96.4	0.18	146	15	0.005				