

Haldimand County

Geotechnical Investigation

Type of Document Final

Project Name

Proposed Cast Iron Watermain Replacements Various Streets in Caledonia, Cayuga and Hagersville, Ontario

Project Number

HAM-00801497-A0

Prepared By:

EXP Services Inc. 80 Bancroft Street Hamilton, ON L8E 2W5 Canada

Date Submitted

11.23.2018

Table of Contents

1	Introducti	ion	2			
1.1	Background2					
2	Investigat	tion Program	2			
2.1	General F	ieldwork	2			
2.2	Environme	ental Testing	3			
2.3	Site Asses	ssment Criteria	3			
3	Subsurfac	ce Conditions	5			
3.1	Stratigrapl	hy	5			
	3.1.1	Site No. 1 (Cayuga – Boreholes BH-01 to BH-12)	5			
	3.1.2	Site No. 2 (Hagersville – Boreholes BH-13 and BH-14)	6			
	3.1.3	Site No. 3 (Caledonia – Boreholes BH-15 to BH-22)	7			
3.2	Groundwa	ater	7			
4	Environm	nental Considerations	8			
4.1	General		8			
4.2	Soil Analy	/sis	8			
4.3	Quality As	ssurance	9			
5	General C	Comments	10			
6	Closure		10			
List	of Ap	pendices				
			Appendix			
Drawir	ngs		A			
Certifi	cate of Ar	nalysis	B			

1 Introduction

1.1 Background

EXP Services Inc. (EXP) was retained by Haldimand County (the County) to complete a geotechnical investigation at three (3) sites in Caledonia, Cayuga, and Hagersville as part of the proposed cast iron watermain replacement project. Authorization to proceed with the investigation was provided by Mike King on behalf of the County.

The geotechnical investigation was carried out to establish the subsoil and groundwater conditions at the sites and provide the County with a factual report of the findings.

As requested by the County, the investigation included the advancement of twenty-two (22) boreholes, numbered BH-01 to BH-22, drilled at three (3) sites in Haldimand County as summarized in the following table.

Table 1-1: Site Location Summary

Site No.	Site Location	Relevant Boreholes
1	Cayuga: Chippawa Street West, Ouse Street South, Brant Street, Cayuga Street South, Seneca Street, Kerr Street East, Norton Street East, Johnson Street and Ouse Street North	BH-01 to BH-12
2	Hagersville: Victoria Street and Foundry Street	BH-13 to BH-14
3	Caledonia: Fife Street West, Renfrew Street East, Blair Street, Queen Avenue, Park Lane	BH-15 to BH-22

2 **Investigation Program**

2.1 **General Fieldwork**

The number, location, and depth of the boreholes was determined by the County. The approximate borehole locations are shown on Drawings No. 1A to 1E in Appendix A. Prior to the commencement of the drilling operations, the public underground services were located to minimize the risk of contacting any such services during the drilling operations.

The fieldwork for the investigation was carried out on July 16 and 19, 2018. A total of twenty-two (22) boreholes, numbered BH-01 to BH-22, were advanced at the sites by a specialist drilling subcontractor under the full-time supervision of EXP staff. The boreholes were advanced to depths ranging from 0.9 m to 2.7 m below grade using a truck-mounted drill rig equipped with continuous-flight augers. Traffic control procedures in accordance with Book 7 were implemented for the duration of the investigation.

Soil samples were obtained using a 51 mm (2 inch) outside diameter split-spoon sampler in conjunction with Standard Penetration Tests (ASTM D1586) at the depths noted on the borehole logs in Appendix A. The retained samples were logged in the field and then carefully packaged and transported to our Hamilton laboratory for detailed visual, textural and olfactory classification. The Standard Penetration Test (SPT) N values and pocket penetrometer measurements were recorded and used to provide an assessment of the compactness condition or consistency of the in-situ soils, respectively.

Groundwater levels within the boreholes were measured prior to backfilling. Moisture content determinations were carried out on all soil samples and the results are summarized on the borehole logs presented in Appendix A. The boreholes were backfilled in accordance with O.Reg. 903 upon completion of drilling and capped with cold patch.

The borehole locations were marked on site by the County and were drilled under the supervision of EXP personnel in accessible locations, free of overhead obstructions and buried utilities. The ground surface elevations at the borehole locations were provided by the County following the investigation.

2.2 Environmental Testing

Limited environmental testing was conducted on selected soil samples recovered from the boreholes as part of this geotechnical investigation. Due to limited historical knowledge of the Site and surrounding properties, the test parameters selected for the soil samples were metals and inorganics. Additional contaminants may be present in the soil from historic site or surrounding property use that were not analyzed. Groundwater was not tested as this was beyond the scope of work.

Twenty–two (22) representative soil samples were submitted, one (1) sample per borehole advanced and submitted to a certified laboratory for analytical testing.

Dedicated nitrile gloves (i.e., one pair per sample) were used during sample handling. The soil samples were placed in laboratory-supplied glass jars and clean ice-packed coolers prior to and during transportation to the subcontracted laboratory, AGAT Laboratories (AGAT) of Mississauga, Ontario. The samples were transported/submitted under Chain of Custody documentation.

The soil samples were selected for laboratory analysis for metals and inorganics to determine the chemical quality of this material, in the event off-site disposal was required during construction. The samples selected are shown in Section 4 below and were chosen because they represent soils which may be disposed of off-site during construction.

2.3 Site Assessment Criteria

The assessment criteria, Site Condition Standards (SCS), applicable to a given site in Ontario are established under subsection 168.4(1) of the Environmental Protection Act. Tabulated generic criteria are provided in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" ("the SGWS Standards"), MOECC, July 2011. These criteria are based on site sensitivity (sensitive or non-sensitive), groundwater use (potable or non-potable), property use (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration). In addition, site

specific criteria may be established on the basis of the findings of a Risk Assessment carried out in accordance with Part IX and Schedule C of Ontario Regulation 153/04 (O. Reg. 153/04).

The SGWS Standards specify SCS for soil, groundwater and sediment that are tabulated as follows:

- Table 1: applicable to sites where background concentrations must be met (full depth) such as sensitive sites where site-specific criteria have not been derived
- Table 2: applicable to sites with potable groundwater and full depth restoration
- Table 3: applicable to sites with non-potable groundwater and full depth restoration
- Table 4: applicable to sites with potable groundwater and stratified restoration
- Table 5: applicable to sites with non-potable groundwater and stratified restoration
- Table 6: applicable to sites with potable groundwater and less than 2 m of overburden above bedrock
- Table 7: applicable to sites with non-potable groundwater and less than 2 m of overburden above bedrock
- Table 8: applicable to sites with potable groundwater and less than 30 m from a water body
- Table 9: applicable to sites with non-potable groundwater and less than 30 m from a water body

For assessment purposes, EXP selected the following SCS tables for each of the three (3) sites:

Table 2-2: Site Condition Standards (SCS) Table Selection by Site

Site No.	Site Location	Site Use	SCS Table	Predominant Soil Type
1	Cayuga: Chippawa Street West, Ouse Street South, Brant Street, Cayuga Street South, Seneca Street, Kerr Street East, Norton Street East, Johnston Street South and Ouse Street North		Table 9	Fine Grained
2	Hagersville: Victoria Street and Foundry Street		Table 7	Fine Grained
3	Caledonia: Fife Street West, Renfrew Street East, Blair Street, Queen Avenue, Park Lane	Community	Table 3	Fine Grained

The selection of the above noted categories is based on the following factors:

- At the time of the field investigation, the sites are not considered sensitive sites
- To the best of EXP's knowledge, all properties within 250 m of the sites are serviced by the municipal water and based on EXP's knowledge of the study area and field observations, groundwater is not used as a potable water source either on or within 250 m of the sites

- The sites are not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater
- There is no intention to carry out a stratified restoration at the sites
- A waterbody (Grand River) is located within 30 m of Site No. 1
- Bedrock was encountered at less than 2.0 m below grade at Site No. 2

3 Subsurface Conditions

Details of the soil and groundwater conditions encountered during the drilling program are summarized on the attached borehole logs in Appendix A.

The logs include textural descriptions of the subsoil and indicate the soil boundaries inferred from non-continuous sampling and observations during drilling. These boundaries reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report.

3.1 **Stratigraphy**

Details of the encountered subsurface conditions at each site are provided in the following sections.

3.1.1 Site No. 1 (Cayuga – Boreholes BH-01 to BH-12)

3.1.1.1 Pavement Structure

The pavement structure at this site consisted of approximately 100 mm to 140 mm of asphalt overlying 160 mm to 280 mm of granular fill.

3.1.1.2 Fill

Fill materials were encountered at all borehole locations, except for Boreholes BH-06 and BH-09, below the pavement structure extending to depths ranging from approximately 0.5 m to 1.8 m below grade. The fill was variable and consisted of silty sand, sandy silt, and silty clay and was noted to be brown and in a moist state.

3.1.1.3 Silty Clay

Native silty clay was encountered below the fill or pavement structure at all borehole locations and extended to 2.3 m below grade at Borehole BH-02 and to the borehole termination depth of 2.7 m below grade at all remaining locations. The silty clay was noted to be brown and in a moist state with moisture contents ranging from 5 to 29 percent of dry mass. SPT N values of the stratum ranged from 7 to 49 blows per 305 mm of penetration. Based on undrained shear strengths from pocket penetrometer readings ranging from 175 kPa to greater than 225 kPa, the silty clay is classified as very stiff to hard in consistency.

3.1.1.4 Sandy Silt

Sandy silt was encountered at BH-02 below the silty clay stratum and extended to the borehole termination depth of 2.7 m below grade. The sandy silt contained trace clay and trace gravel and was noted to be brown and in a moist state with a single moisture content of 9 percent of dry mass. Based on a single SPT N value of 60 blows per 305 mm of penetration, the stratum is classified as very dense.

3.1.2 Site No. 2 (Hagersville – Boreholes BH-13 and BH-14)

3.1.2.1 Pavement Structure

The pavement structure consisted of 120 mm of asphalt overlying 200 mm of granular fill at Borehole BH-13 on Victoria Street and 100 mm of asphalt overlying 250 mm of granular fill at Borehole BH-14 on Foundry Street.

3.1.2.2 Fill

Fill materials were encountered at both boreholes below the pavement structure extending to depth of 0.5 m below grade at BH-13 and 0.8 m below grade at BH-14. The fill materials consisted of brown silty clay with trace gravel and were in a moist state.

3.1.2.3 Silty Clay

Native silty clay was encountered below the fill at both borehole locations and extended to the borehole termination depth of 0.9 m below grade at BH-13 and 1.7 m below grade at BH-14. The silty clay was brown and in a moist state with moisture contents ranging from 15 to 17 percent of dry mass. SPT N values of the stratum ranged from 8 to 15 blows per 305 mm of penetration. Based on undrained shear strengths from pocket penetrometer readings ranging from 200 to greater than 225 kPa, the silty clay is classified as very stiff to hard in consistency.

3.1.2.4 Possible Bedrock

Possible bedrock was encountered at both borehole locations and was inferred based on drilling observations. Based on *Ontario Geological Survey Map 2544, Bedrock Geology of Ontario, Southern Sheet*, the bedrock at Site No. 2 consists of sandstone, dolostone and limestone of the Bois Blanc and Oriskany Formation from the Lower Devonian Period. Hard limestone bedrock can result in contractual problems for excavations. The bedrock surface ranged from approximately 0.9 m to 1.7 m below grade as noted in the following table:

Table 3-3: Depths and Elevations of Bedrock Surface

Borehole No.	Depth of Bedrock Surface (m)	Elevation of Bedrock Surface (m)	Rock Quality Designation (RQD)		
BH-13	0.9	222.5	N/A		
BH-14	1.7	222.6	N/A		

3.1.3 Site No. 3 (Caledonia – Boreholes BH-15 to BH-22)

3.1.3.1 Pavement Structure

The pavement structure at Site No. 3 consisted of approximately 100 mm to 130 mm of asphalt overlying 200 mm to 300 mm of granular fill.

3.1.3.2 Fill

Fill materials were encountered at all borehole locations, except for Borehole BH-22, below the pavement structure extending to depths ranging from 0.8 m below grade to the borehole termination depth of 2.7 m below grade. In general, the fill materials consisted of brown silty clay with trace to some sand, trace gravel. A silty sand fill material was also encountered at Boreholes BH-17 and BH-18. The fill materials were generally in a slightly moist to moist state but were noted to become very moist below 2.6 m at Borehole BH-17. Occasional brick fragments and organic staining was also noted.

3.1.3.3 Silty Clay

Native silty clay was encountered below the fill and pavement structure at Boreholes BH-15, BH-18, BH-21 and BH-22 and extended to the borehole termination depth of 2.7 m below grade. The silty clay was brown and in a moist state with moisture contents ranging from 11 to 27 percent of dry mass. SPT N values of the stratum ranged from 6 to 16 blows per 305 mm of penetration. Based on undrained shear strengths from pocket penetrometer readings ranging from 150 kPa to greater than 225 kPa, the silty clay is classified as very stiff to hard in consistency.

3.1.3.4 Sandy Silt

Native sandy silt was encountered at Boreholes BH-19 and BH-20 below the fill and extended to the borehole termination depth of 2.1 and 2.7 m below grade, respectively. The sandy silt was noted to be brown with trace gravel and silty clay partings and was in a moist to very moist state with moisture contents ranging from 15 to 22 percent of dry mass. Based on SPT N values ranging from 3 to 10 blows per 305 mm of penetration, the stratum is classified as very loose to loose. Borehole BH-19 was terminated at 2.1 m depth due to practical auger refusal on assumed boulder or bedrock.

3.2 **Groundwater**

Groundwater levels were measured in the open boreholes during and upon completion of drilling operations. The boreholes remained dry upon completion.

Groundwater levels are not anticipated to have stabilized during the short term of the investigation. Seasonal variations in the water table should be anticipated, with higher levels occurring during wet weather conditions (spring thaw and late fall) and lower levels occurring during dry weather conditions.

4 Environmental Considerations

4.1 General

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. Copies of the laboratory Certificates of Analysis for the tested soil samples are provided in Appendix B.

4.2 **Soil Analysis**

The SCS are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The Certificates of Analysis include pH measurements taken on twenty-one (21) surface soil samples and one (1) subsurface soil sample. The reported pH values obtained from the soil samples were within the acceptable range to enable the use of the generic SCS.

Twenty–two (22) soil samples were analyzed for metals and inorganics. The results of the metals and inorganics analysis together with the applicable SCS table are summarized in Tables B1 to B3 in Appendix B. As shown in Appendix B, the following exceedances are noted:

- Mercury: BH-11 SS2
- Electrical Conductivity (EC): BH-03 SS2, BH-05 SS1B, BH-06 SS1, BH-10 SS1, BH-12 SS1, BH-13 SS1, BH-15 SS2, BH-16 SS4, BH-19 SS2, BH-20 SS1 and BH-21 SS2
- Sodium Adsorption Ratio (SAR): BH-04 SS2, BH-05 SS1B, BH-10 SS1, BH-13 SS1, BH-18 SS2, BH-19 SS2 and BH-20 SS1

The source of the elevated Mercury level is unknown but likely attributable to poor quality fill material. The elevated EC and SAR levels detected in the soil may be due to the use of fill material exposed to salt for the protection of traffic and public safety. Ontario Regulation 153/04, S. 48 (3), currently prescribes an exemption to exceedances of SCS that are a result of substances used on a highway for the purpose of keeping the highway safe for traffic under conditions of snow or ice. The exemption does not apply to areas not designated as a 'highway' (e.g. sidewalks, parking lots). However, proposed amendments to Ontario Regulation 153/04 (which have not been finalized), would allow for the exemption to extend to private property if it can be demonstrated that the exceedance is solely because a substance has been used for the purpose of traffic and pedestrian safety under conditions of snow/ice. Based on the limited test results, the following options for soil disposal are presented:

Table 4-2: Summary of Soil Samples Submitted for Laboratory Analyses

Option	Description	Advantages	Disadvantages / Considerations
1	Re-use excess soil on site	Cheapest option	 Must be geotechnically suitable for re-use and meet specifications. Potential limitations for stockpiling / temporary storage

Option	Description	Advantages	Disadvantages / Considerations
2	Dispose excess soil at 3 rd party sites (applicable only to EC/SAR exceedances)	Less expensive than landfill disposal	Must have Environmental Compliance Approval to accept soils that exceed generic SCS for EC/SAR Sites sometimes difficult to find at time of construction Additional testing may be required prior to acceptance
3	Dispose excess soil at licensed landfill sites usually open to accept soils		 Most expensive option May require additional TCLP tests prior to landfill acceptance Delineation of exceedances may reduce volume of impacted soil

4.3 **Quality Assurance**

Details regarding quality assurance measures taken in the field, including instrument calibration, decontamination procedures, use of dedicated equipment, sample storage and Chain of Custody documentation are provided in Section 2.2.

The subcontract laboratory used during this investigation, AGAT Laboratories, is accredited by the Standards Council of Canada/Canadian Association of Laboratory Accreditation in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the analysis of all parameters for all samples in the scope of work for which SCS have been established under Ontario Regulation 153/04 as amended by Ontario Regulation 511/09 and Ontario Regulation 179/11.

The "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" ("the Analytical Protocol"), MOECC, July 2011, establishes criteria used in assessing the performance of analytical laboratories when the data are used in support of the filing of Records of Site Condition.

The laboratory quality assurance program included the analysis of laboratory duplicate (replicate) samples, method blanks, spiked blanks, spiked samples and samples of reference materials in accordance with the Analytical Protocol. These analytical results comprise portions of the Certificates of Analysis in Appendix B.

Haldimand County
Proposed Cast Iron Watermain Replacement
Various Streets in Caledonia, Cayuga and Hagersville, Ontario
HAM-000801497-A0
November 23, 2018

5 General Comments

The information presented in this report is based on a limited investigation designed to provide information to support an overall assessment of the current geotechnical conditions of the subject property. The conclusions presented in this report reflect site conditions existing at the time of the investigation.

EXP Services Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, EXP Services Inc. will assume no responsibility for interpretation of the findings in the report.

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

More specific information, with respect to the conditions between samples, or the lateral and vertical extent of materials, may become apparent during excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent; should this occur, EXP Services Inc. should be contacted to assess the situation and additional testing and reporting may be required. EXP Services Inc. has qualified personnel to provide assistance in regards to future geotechnical and environmental issues related to this property.

6 Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

EXP Services Inc.

Dilsher Bhangal, M.Eng.

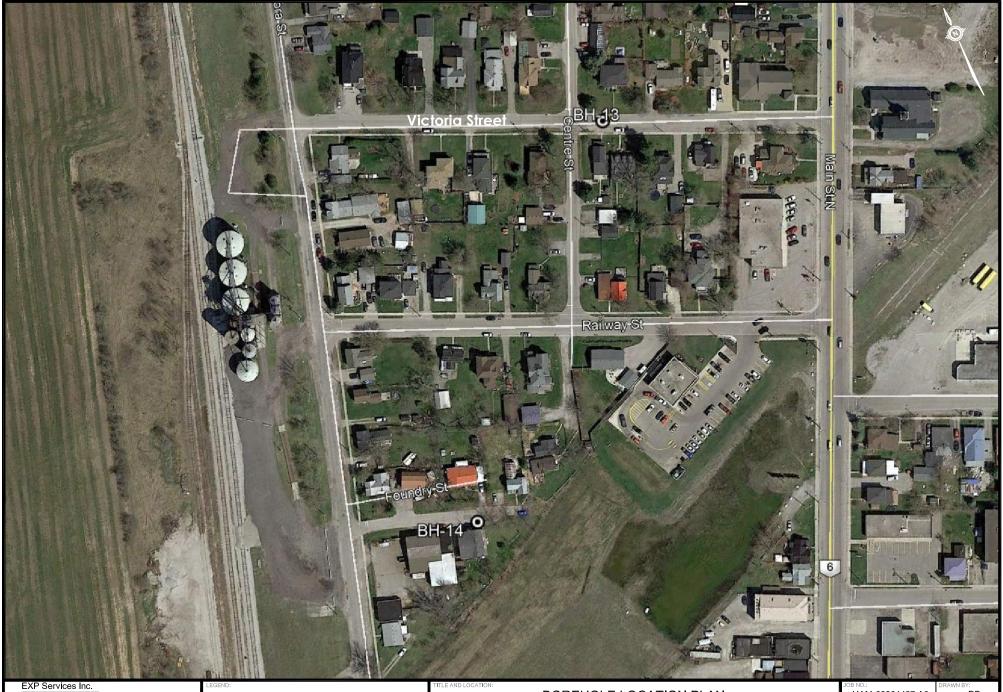
Designer

Jeffrey Golder, P.Eng.

Manager, Hamilton Geotechnical Services

Haldimand County Proposed Cast Iron Watermain Replacement Various Streets in Caledonia, Cayuga and Hagersville, Ontario HAM-000801497-A0 November 23, 2018

Appendix A – Drawings


www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

APPROXIMATE BOREHOLE LOCATION

GEOTECHNICAL INVESTIGATION PROPOSED CAST IRON WATERMAIN REPLACEMENT VARIOUS STREETS IN CALEDONIA, CAYUGA AND HAGERSVILLE, ON

JOB NO.: HAM-00801497-A0	DRAWN BY:		
SCALE:	CHECKED BY: JG		
DATE: SEPTEMBER 2018	DWG NO.:		

EXP Services Inc. t: +1.905.573.4000 | f: +1.905.573.9693 80 Bancroft Street Hamilton, ON L8E 2W5 Canada

www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

APPROXIMATE BOREHOLE LOCATION

BOREHOLE LOCATION PLAN GEOTECHNICAL INVESTIGATION PROPOSED CAST IRON WATERMAIN REPLACEMENT VARIOUS STREETS IN CALEDONIA, CAYUGA AND HAGERSVILLE, ON

JOB NO.: HAM-00801497-A0	DRAWN BY:
SCALE: NTS	CHECKED BY: JG
DATE: SEPTEMBER 2018	DWG NO.:

www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

APPROXIMATE BOREHOLE LOCATION

GEOTECHNICAL INVESTIGATION PROPOSED CAST IRON WATERMAIN REPLACEMENT VARIOUS STREETS IN CALEDONIA, CAYUGA AND HAGERSVILLE, ON

JOB NO.: HAM-00801497-A0	DRAWN BY:
SCALE: NTS	CHECKED BY: JG
DATE: SEPTEMBER 2018	DWG NO.:

www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

APPROXIMATE BOREHOLE LOCATION

BOREHOLE LOCATION PLAN GEOTECHNICAL INVESTIGATION PROPOSED CAST IRON WATERMAIN REPLACEMENT VARIOUS STREETS IN CALEDONIA, CAYUGA AND HAGERSVILLE, ON

ЛОВ NO.: НАМ-00801497-A0	DRAWN BY:
SCALE:	CHECKED BY: JG
SEPTEMBER 2018	DWG NO.: 1E

Notes on Sample Descriptions

1. All sample descriptions included in this report follow the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), as outlined in the Canadian Foundation Engineering Manual. Note, however, that behavioral properties (i.e. plasticity, permeability) take precedence over particle gradation when classifying soil. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

ISSMFE SOIL CLASSIFICATION											
CLAY		SILT	_		SAND	GRAVEL			COBBLES	BOULDERS	
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (75 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Notes On Soil Descriptions

4. The following table gives a description of the soil based on particle sizes. With the exception of those samples where grain size analyses have been performed, all samples are classified visually. The accuracy of visual examination is not sufficient to differentiate between this classification system or exact grain size.

Soil C	lassification	Terminology	Proportion
Clay and Silt	<0.060 mm	"trace" (e.g. Trace sand)	1% to 10%
Sand	0.060 to 2.0 mm	"some" (e.g. Some sand)	10% to 20%
Gravel	2.0 to 75 mm	adjective (e.g. sandy, silty)	20% to 35%
Cobbles	75 to 200 mm	"and" (e.g. and sand)	35% to 50%
Boulders	>200 mm		

The compactness of Cohesionless soils and the consistency of the cohesive soils are defined by the following:

Cohe	sionless Soil	Cohesive Soil									
Compactness	mpactness Standard Penetration Resistance "N" Blows / 0.3 m		Undrained Shear Strength (kPa)	Standard Penetration Resistance "N" Blows / 0.3 m							
Very Loose	0 to 4	Very soft	<12	<2							
Loose	4 to 10	Soft	12 to 25	2 to 4							
Compact	10 to 30	Firm	25 to 50	4 to 8							
Dense	30 to 50	Stiff	50 to 100	8 to 15							
Very Dense	Over 50	Very Stiff	100 to 200	15 to 30							
		Hard	>200	>30							

5. ROCK CORING

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundless of the rock mass. It is obtained from the rock cores by summing the length of the core covered, counting only those pieces of sound core that are 100 mm or more length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

RQD Classification	RQD (%)
Very Poor Quality	<25
Poor Quality	25 to 50
Fair Quality	50 to 75
Good Quality	75 to 90
Excellent Quality	90 to 100

Recovery Designation % Recovery = Length of Core Per Run

Total Length of Run

Project l	No.	HAM-00801497-A0	J			wing No3			3			
Project:		Proposed Cast Iron Water	main Re	ер	lacements		_	1	_ of	f <u>1</u>		
_ocatior	n:	Chippawa Street West, C	ayuga									
Date Drilled: Drill Type: Datum:		July 16, 2018 CME 75 Truck Mount. Soli Geodetic	<u>.</u>	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Natur Plasti Undra % Str	oustible Va al Moisture c and Liqu ained Triax ain at Faile trometer	⊕ ≜				
S Y M B O L		Soil Description	ELEV. m	D E P T H	N Val	60 80 kF		25 stural Moist rberg Limit	our Reading (pp 50 75 ture Content % s (% Dry Weight		۱ ۱	Natural Unit Weight kN/m³
		HALT: (~100 mm thick)	189.80 ~189.7	0	100	200		10 2	20 30		5	
	GRA	NULAR FILL: (~200 mm thick)	100.7									
	FILL	silty sand, brown, moist	~189.5 —		12 O			*				
	SILT	Y CLAY: brown, moist, very stiff	~189.0	11	ð	200		×				
	_		_	2	18 Ö	200			X			
	Bore	hole terminated at 2.7 m depth.	~187.1		10	200			×			
	subje prese 2. Int	ES: is drawing is to be read with the ect report and project number as ented above. serpretation assistance by EXP is red before use by others.		3								

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project	t No.	HAM-00801497-A0												Drawing No4							
Project	t:	Proposed Cast Iron Water	rmain Re	epl	ac	em	ent	S							She	et N	o	1_	of _1	1	
_ocatio	ocation: Chippawa Street West, Cayuga																			_	
Date Drilled: Drill Type: Datum:		July 16, 2018 CME 75 Truck Mount. Solid Stem. Geodetic				Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test							Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer								
S Y M B O L		Soil Description	ELEV. m	DEPTH	SI	20 near S		40	Value 6	0	80 k 200	Pa	Nat Atterb	stible Va 5 ural Moi erg Lim 0	50	7 Conter Dry W	5) SAMPLES	Natura Unit Weigh	ht	
	ASP	HALT: (~100 mm thick)	184.36 ~184.3	0 -	Т						200					П		1			
	GRA	NULAR FILL: (~200 mm thick)	~104.3																		
		: silty clay, some sand, trace el, brown, moist	~184.1 _	-		9							>								
	_		_	1-		18							×-								
		Y CLAY: some sand, trace el, brown, moist, hard	~182.8 —	2				35			>2	25	×								
	SAN brow	DY SILT: trace clay, trace gravel, n, moist, very dense		-					6	0			×								
	NOT 1. Th subje prese 2. In	chole terminated at 2.7 m depth. ES: his drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is irred before use by others.	~181.6	3																	
				-					++			\square						\perp			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project No. HAM-00801497-A0								•) 1 '		D ,				Draw	ing No.			5	
Р	roject:		Proposed Cast Iron Water	main Re	eplacements								Sheet No.			1	1 of			
L	ocation	1 :	Ouse Street South, Cayug	ja														_		
Date Drilled: Drill Type: Datum:			July 16, 2018 CME 75 Truck Mount. Solid Geodetic	-	Auger S SPT (N Dynami Shelby Field Va) Value c Cone Tube	Test	t	_			Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer					×	<		
G W L	S M B O L		Soil Description	ELEV. m	DEPTH	1	20 Strengt	40 h		60	20	kPa		25	50	e Content % % Dry Weig		SAMPLES	Natu Ur Wei kN/	nit ght
		ASP	HALT: (~120 mm thick)	180.08	0			100			20				20	30		5		
		GRA	NULAR FILL: (~220 mm thick) : sandy silt, trace gravel, brown, t, brick fragments	~180.0	1	12								×						
		1.5 n	ets, black organic staining below Y CLAY: trace gravel, brown, t, very stiff to hard	_~178.3	2	- 7 O					20	0		×						
		NOT 1. Th subje prese 2. Int	hole terminated at 2.7 m depth. ES: his drawing is to be read with the ect report and project number as ented above. herpretation assistance by EXP is ired before use by others.	_~177.3	3		24					>225		×						

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project	No.	HAM-00801497-A0	Drawing No.		6						
Project	Proposed Cast Iron Water	main Re	ep	lacements		Sheet No.	_1_	of	_1		
Ouse Street South, Cayuga Date Drilled: July 16, 2018 Drill Type: CME 75 Truck Mount. Solid Solution: Geodetic		ja									
		CME 75 Truck Mount. Soli	- -	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Combusti Natural M Plastic ar Undraine % Strain Penetrom		⟨			
SYMBOL		Soil Description	ELEV. m 180.06	DEPTH	Shear Strength	ue 60 80 kPa 200	25 Natura	ole Vapour Reading (pp. 50 75 al Moisture Content % g Limits (% Dry Weigh 20 30	A M P	Na We kN	ntural Jnit eight N/m³
		HALT: (~120 mm thick)	~179.9	0	,						
	FILL	NULAR FILL: (~160 mm thick) silty clay, trace sand, trace el, brown, moist	~179.8		9			*			
	FILL mois	silty sand, some gravel, brown, t	~179.3	1	18		*				
	SILT	Y CLAY: brown, moist, hard	=~178.5	2	Ö	>225		×			
	2.3 n —		~177.3		49			×			
	NOT 1. Th subject prese 2. Int	hole terminated at 2.7 m depth. ES: is drawing is to be read with the ect report and project number as ented above. erpretation assistance by EXP is red before use by others.	~1//.5	3 3							

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project No	HAM-00801497-A0	3 3.				Drawing N	o	7	7
Project:	Proposed Cast Iron Water	rmain Re	epl	lacements		Sheet N	o. <u>1</u>	_ 0	f <u>1</u>
_ocation:	Brant Street, Cayuga								
Date Drille Drill Type: Datum:		July 16, 2018 CME 75 Truck Mount. Solid Stem.				Combustible Vapour Rea Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer	-	×	
S Y W B C L	Soil Description	ELEV. m	DEPTH	N Va 20 40 Shear Strength 100	60 80 kPa 200	Natural Moisture Conte Atterberg Limits (% Dry W	ng (ppm) 75 nt % /eight)	M P L	Natural Unit Weight kN/m³
Δ.	SPHALT: (~120 mm thick)		0 -				Ĭ	Ť	
F	GRANULAR FILL: (~270 mm thick) FILL: silty clay, trace gravel, brown, noist, rootlets, black organic staining	~181.3 ~181.0	-	å		*			
F	ILL: sandy silt, brown, moist	~180.6 ~180.5							
	SILTY CLAY: brown, moist, very stiff race sand, trace gravel below 1.5 m		1	Ö	175	×			
N 1 s p	Borehole terminated at 2.7 m depth. NOTES: . This drawing is to be read with the ubject report and project number as resented above. Interpretation assistance by EXP is equired before use by others.	~178.6	3-	13 O	200	×			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

^o ro	ject No.		3				Drav	ving No		8
Project: Proposed Cast Iron Water			rmain Re	ер	lacements		Sh	eet No.	1_	of _1_
		yuga								
		CME 75 Truck Mount. Sol	lid Stem	- - -	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Combustible Vap Natural Moisture Plastic and Liquid Undrained Triaxia % Strain at Failur Penetrometer] ()		
G W L	S Y M B O L	Soil Description	ELEV. m 186.19	DEPTH	20 40 0 Shear Strength	60 80 kPa	Combustible Vapou 25 50 Natural Moistur Atterberg Limits (10 20	75 re Content % (% Dry Weight)	n) SAMPLES	Natural Unit Weight kN/m³
Date Drille Drill Type: Datum: Symbol Datum: Symb	AS	SPHALT: (~130 mm thick)		0		200	10 20			
No se o se o se	GI	RANULAR FILL: (~270 mm thick)	~186.1		10				+	
	SI to	LTY CLAY: brown, moist, very stiff hard, rootlets	~185.8 _		Ö	>225		×		
	_		_	1	11	>225		×		
	_		_						+22	
	_			2	Ö	>225		×	+	
	_		_		10	200		×		
			~183.5						+	
	NO 1. su pro 2.	orehole terminated at 2.7 m depth. OTES: This drawing is to be read with the bject report and project number as esented above. Interpretation assistance by EXP is quired before use by others.	100.0	3						4

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project	No.	<u>HAM-00801497-A</u> 0														D	raw	ing	No.		9	ı
Project	::	Proposed Cast Iron Water	main Re	epl	la	се	m	en	s							_	Sh	eet	No.	1	of	f <u>1</u>
_ocatio	n:	Seneca Street, Cayuga																				
Date Drilled: Drill Type: Datum:		July 16, 2018 CME 75 Truck Mount. Solid Stem. Geodetic				Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test							Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer					→				
S Y M B O L		Soil Description	ELEV. m	DEPTH	-	Shea	20 ar St) treng	40		alue 6	0	80	kPa		oustible V 25 atural Mo erberg Lin 10	50		75	I A	N V	Natural Unit Weight kN/m³
ASP GRA FILL grav stain	HALT: (~140 mm thick)	186.91	0					10				200			10	20		30	S			
		NULAR FILL: (~270 mm thick)	~186.8 ~186.5			10																
		: silty clay, trace sand, trace el, brown, moist, black organic ing				0											×					
	SILT	Y CLAY: brown, moist, hard	~186.2 	1		<u></u>								>225				×				
						Ċ	3							>225				×	.			
	_			2																		
	_					1:	3							>225				×				
	NOT 1. Th subje pres 2. In	ehole terminated at 2.7 m depth. ES: his drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is ired before use by others.	~184.2	3																		

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project	No.	HAM-00801497-A0	9	_		.	Dra	wing No		10
Project	:	Proposed Cast Iron Water	S	Sheet No.						
_ocatio	n:	Kerr Street East, Cayuga								
Date Drilled: Drill Type: Datum:		July 16, 2018 CME 75 Truck Mount. Soli Geodetic	<u>.</u>	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Combustible Va Natural Moisture Plastic and Liqu Undrained Triax % Strain at Failu Penetrometer	id Limit —	\ \ \ \ \ ⊕ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<	
S Y M B O L		Soil Description	ELEV. m 191.38	DEPTH 0	Shear Strength	ue 60 80 kPa 200	Natural Moist Atterberg Limits	our Reading (ppm 50 75 ure Content % 5 (% Dry Weight) 20 30	S A M P L E S	Natural Unit Weight kN/m³
و جر جر ۰		HALT: (~100 mm thick)	~191.3	0						,
		NULAR FILL: (~200 mm thick) : silty sand, brown, moist	~191.1 		14		*			
		Y CLAY: trace sand, trace el, brown, moist, very stiff to hard	~190.6	111	12 O		×			
	_			2	ő		×			
	Bore	hole terminated at 2.7 m depth.	~188.6		19	>225	×			
	NOT 1. Th subje prese 2. In			3						

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

٦	oject	No.	HAM-00801497-A0	9 0.					. •		• •		Draw	/ing	No.		11	
٦r	oject:		Proposed Cast Iron Water	main Re	ер	la	cei	nent	S				Sh	eet	No.	1	of	_1
_C	catio	า:	Norton Street East, Cayu	ga														
Dr	ate Drilled: July 16, 2018 CME 75 Truck Mount. Solid Stematum: Geodetic				- -	SF Dy Sh	PT (N nam nelby	Sample I) Value ic Cone ⁻ Tube ane Test			⊠ 22 -	Combust Natural M Plastic ar Undraine % Strain Penetrom	loisture nd Liquid d Triaxia at Failure	Limi I at		>	□ × ↔	
G N L	S M B O L		Soil Description	ELEV. m 189.43	DEPTH	3	Shea	20 r Strength	N V 40 100	60	80 kPa	Combustib 25 Natura Atterber	50 al Moistur	e Co % Dr	75		N	atural Unit /eight :N/m³
		ASPI	HALT: (~130 mm thick)		0												+	
		GRA	NULAR FILL: (~280 mm thick)	~189.3			7											
		SILT to ha	Y CLAY: brown, moist, very stiff ard, black organic staining	~189.0)			175					×			
		_		_	1		13 C				>225		,	×				
		_																
							٥			175					×			
		_			2													
		_		~186.7			Ö				>225				×			
		NOT 1. Th subject prese 2. Int	hole terminated at 2.7 m depth. ES: his drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is ired before use by others.		3													

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Johnson Street, Cayuga Location: Combustible Vapour Reading \boxtimes Auger Sample July 16, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 -0 Plastic and Liquid Limit Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 190.24 ASPHALT: (~120 mm thick) -190.1 GRANULAR FILL: (~280 mm thick) ő -189.8 FILL: silty clay, brown, moist, black organic staining -189.5 SILTY CLAY: brown, moist, very stiff ö ~187.5 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Ouse Street North, Cayuga Location: Combustible Vapour Reading \boxtimes Auger Sample July 16, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 -0 Plastic and Liquid Limit Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description m Shear Strength 184.27 ASPHALT: (~100 mm thick) -184.2 GRANULAR FILL: (~200 mm thick) -184.0 FILL: silty clay, trace gravel, brown, Ô moist, organic odour đ ~182.8 SILTY CLAY: brown, moist, hard ~181.5 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project	No.	HAM-00801497-A0	9 •.			- - · ·	Drawing	No		14	
Project	:	Proposed Cast Iron Water	main Re	epl	lacements		Sheet	No	<u>1</u> (of _	1
ocatio	n:	Ouse Street North, Cayug	а								
Date D Drill Ty Datum:	pe:	July 16, 2018 CME 75 Truck Mount. Soli Geodetic	uly 16, 2018 ME 75 Truck Mount. Solid Stem. Auger San SPT (N) V: Dynamic C Shelby Tut				Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit H Undrained Triaxial at % Strain at Failure Penetrometer		□ × ⊕		
SYM BOL	ACD	Soil Description	ELEV. m 182.42	DEPTH 0	Shear Strength	60 80 kPa	Combustible Vapour Res 25 50 Natural Moisture Co Atterberg Limits (% Dr 10 20	75 ntent %) SAMPLES	Natu Ur Wei kN/	nit ight
		HALT: (~100 mm thick) NULAR FILL: (~200 mm thick)	~182.3						+		
	FILL mois	: silty clay, trace gravel, brown, t, black organic staining Y CLAY: brown, moist, hard	~182.1 ~182.0		19	>225	×				
	_			1 -	15	>225	×				
	_			2	ð	>225	×				
	Bore	hole terminated at 2.7 m depth.	~179.7		13	>225	×				
	NOT 1. Th subje pres 2. In			3-1							

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project No. <u>HAM-00801497-A</u> 0						_						•	•	. •	Dra	awi	ng N	lo		15	
Project: Proposed Cast Iron Watermain R			main Re	eplacements								Sheet No1_ of						of _	_1_		
_ocatio	n:	Victoria Street, Hagersvill	е																		
Date Dr Drill Typ Datum:		July 19, 2018 CME 75 Truck Mount. Solid Stem. Geodetic			Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test							Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer									
S Y M B O L		Soil Description	ELEV.	DEPTH	Sh		20 Stren	gth	N Va	alue 6	0	80	kPa	Na Atter	tural Mois berg Limi	50 sture ts (%	Conte	75 ent % Veight)	· IA	Natu Ur Wei kN/	nit ght
	ASP	HALT: (~120 mm thick)	223.38	0 -	П			10	00			200			10	20		30	S	10.47	
	GRA	NULAR FILL: (~200 mm thick)	~223.3 —~223.1																		
	grave ` stain		~222.9		Č	3									×						
	SILT	Y CLAY: brown, moist, very stiff	, 									200	50/25	mm					+2		
	Bore	hole terminated at 0.9 m depth	~222.5										()					+		
-	_due 1	to practical auger refusal on med bedrock.	-	1																	
	subje	nis drawing is to be read with the ect report and project number as																			
	−2. Int	ented above. terpretation assistance by EXP is ired before use by others.																			
	_			2																	
	_																		+		
				3																	
																		Ш	\parallel		
					Н	+	\mathbb{H}			\coprod						+	$\frac{1}{1}$	\mathbb{H}	+		
					H	+	H			\mathbb{H}						+			+		
				'			Ш											Ш			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	0.9

Project No.		A0											Drawing No						16		
Project:	Proposed Cast Iron Water	Proposed Cast Iron Watermain Replacements												Sheet No.			. <u> </u>	1_	of	1	
_ocation:	Foundry Street, Hagersvill	Foundry Street, Hagersville																			
Date Drilled Drill Type: Datum:	d: July 19, 2018 CME 75 Truck Mount. Soli Geodetic	d Stem	<u>.</u>	SP1 Dyn She	Γ (N) ' amic lby T	ample Value Cone ube ne Tes			0			Natur Plasti Undra % Str	oustible al Mois c and l ained T rain at l tromete	sture Liquid riaxia Failur	d Limi al at		<u> </u>	\ × ⊕			
S Y M B C L	Soil Description	ELEV. m	D E P T H	Sh	2 near S	0 Strengt	40 h	Value 6	60	80	kPa		ustible ' 25 atural M rberg L 10	50 Noistur imits (re Co (% Dr	75	% ight)	SAMPLES	Na U We kN	tural Init eight I/m³	
	SPHALT: (~100 mm thick)	224.31 ~224.2	0 -				100			200				20	, 	30		5	\vdash		
FI	RANULAR FILL: (~250 mm thick) LL: silty clay, trace gravel, brown, oist	~224.0	-	ō									*					-			
SI m	LTY CLAY: trace gravel, brown, oist, hard	~223.6	-															- - -			
_		~222.6	1 -		15						-225 										
Honor du as Honor	orehole terminated at 1.7 m depth ue to practical auger refusal on ssumed bedrock. OTES: This drawing is to be read with the ubject report and project number as esented above. Interpretation assistance by EXP is quired before		2 -															- - - -			
			3-																		

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	1.7

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Fife Street West, Caledonia Location: Combustible Vapour Reading \boxtimes Auger Sample July 19, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 Plastic and Liquid Limit -0 Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 199.30 ASPHALT: (~120 mm thick) -199.2 GRANULAR FILL: (~200 mm thick) ~199.0 **FILL:** silty clay, trace gravel, brown, moist, black organic staining ő ~197.8 SILTY CLAY: brown, moist, very stiff to hard ô ~196.6 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Fife Street West, Caledonia Location: Combustible Vapour Reading \boxtimes Auger Sample July 19, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 Plastic and Liquid Limit -0 Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 200.25 ASPHALT: (~120 mm thick) -200.1 GRANULAR FILL: (~300 mm thick) $\frac{23}{1}$ -199.8 FILL: silty clay, trace gravel, brown, moist, black organic staining Ö ~197.5 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

HAM-00801497-A0 Drawing No. Project No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Renfrew Street East, Caledonia Location: Combustible Vapour Reading \boxtimes Auger Sample July 19, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 Plastic and Liquid Limit -0 Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 192.64 ASPHALT: (~100 mm thick) -192.5 GRANULAR FILL: (~200 mm thick) -192.3 FILL: silty clay, some sand, trace ô gravel, brown, moist Ō ~190.1 FILL: silty sand, trace gravel, brown, very moist -189.9 Borehole terminated at 2.7 m depth. 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Renfrew Street East, Caledonia Location: Combustible Vapour Reading \boxtimes Auger Sample July 19, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 Plastic and Liquid Limit -0 Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 189.14 ASPHALT: (~100 mm thick) -189.0 GRANULAR FILL: (~270 mm thick) -188.8 FILL: silty clay, some sand, brown, đ ~187.6 FILL: silty sand, trace clay, some gravel, brown, moist ö -186.9 SILTY CLAY: brown, moist, hard -186.4 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

⊃ro	oject l	No.	HAM-00801497-A0	497-A0										Drawing No. 2						21					
Pro	oject:		Proposed Cast Iron Watermain Replacements													_	S	hee	t N	o	_1_ of _1				
_0	cation	1.	Blair Street, Caledonia																						
Date Drilled: Drill Type: Datum:			July 19, 2018 CME 75 Truck Mount. Solid Stem. Geodetic					Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test								Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer									
G N L	S Y M B O L		Soil Description	ELEV. m 189.75	DEPTH		She	2 ar S	0 Streng	gth	N \ 10 00	/alue	60		80	kPa		25	Moist Limits	0	7 onter Ory W	ng (ppn 5 nt % /eight)	· IA	N N k	atural Unit /eight N/m³
			HALT: (~100 mm thick)	~189.7	0					Πİ			П					İ		Ĭ	I				
		FILL sand stain brick	NULAR FILL: (~270 mm thick) : silty clay, trace gravel, trace , brown, moist, black organic	~189.7 ~189.4 ~ =~188.2		20	100 C												×	->	4				
		due 1	hole terminated at 2.1 m depth to practical auger refusal on med boulder or bedrock. ES:	 ~187.6	2																				
		subje prese 2. Int	nis drawing is to be read with the ect report and project number as ented above. Iterpretation assistance by EXP is irred before use by others.		3-																				

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.1

HAM-00801497-A0 Project No. Drawing No. Proposed Cast Iron Watermain Replacements Sheet No. 1 of 1 Project: Queen Avenue, Caledonia Location: Combustible Vapour Reading \boxtimes Auger Sample July 19, 2018 × Date Drilled: Natural Moisture SPT (N) Value 0 🛮 Plastic and Liquid Limit -0 Drill Type: CME 75 Truck Mount. Solid Stem. Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Combustible Vapour Reading (ppm) Natural Unit Weight kN/m³ N Value 50 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength m 190.11 ASPHALT: (~130 mm thick) 190.0 GRANULAR FILL: (~270 mm thick) -189.7 FILL: silty clay, brown, moist, black organic staining ~189.4 SANDY SILT: trace gravel, brown, moist, loose, silty clay partings Ö × very moist, very loose below 2.3 m ~187.4 Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project No. <u>HAM-00801497-A</u> 0											Drawing	j No	į	23			
Project: Proposed Cast Iron Watermain Re					р	laceme	nts					Shee	t No.	1_	of <u>1</u>		
Location:		า:	Park Lane, Caledonia														
Date Drilled: Drill Type: Datum:			July 19, 2018 CME 75 Truck Mount. Solid Geodetic	-	Auger Samp SPT (N) Val Dynamic Co Shelby Tube Field Vane T	ie ne Test	t] - I	Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer] ((
G W L	S Y M B O L		Soil Description	ELEV.	DEPTH	20 Shear Strei	40	N Value 60) 8	l0 kPa	25	ble Vapour Re 50 ral Moisture Co rg Limits (% D	75	n) SAMPLES	U We	tural nit eight	
	Ĺ	ASPI	HALT: (~120 mm thick)	192.96	0	l .	100		2	00	10		30	S	kN	/m°	
			NULAR FILL: (~280 mm thick)	~192.8													
		- sligh mois - SILT	s silty clay, trace gravel, brown, tly moist t below 0.8 m Y CLAY: trace sand, trace el, brown, moist, hard	~192.6 ~191.4	1	15 O				>225	×	× × × × × × × × × × × × × × × × × × ×					
		NOT 1. Th subject presents	hole terminated at 2.7 m depth. ES: is drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is red before use by others.		3												

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Project No	D. HAM-00801497-A0	Drawing No24 Sheet No1_ of _1									
Project:	Proposed Cast Iron Wate	Proposed Cast Iron Watermain Replacements									
ocation:	Queen Avenue, Caledoni	а									
Date Drille Drill Type: Datum:		CME 75 Truck Mount. Solid Stem.				Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer					
S Y M B O L	Soil Description	ELEV.	DEPTH	Shear Strength	60 80 kPa	Natural Moisture Conte Atterberg Limits (% Dry V	75 A M P L E	Natural Unit Weight kN/m³			
I I	ASPHALT: (~130 mm thick)	197.80	0) 100	200	10 20	30 S				
(GRANULAR FILL: (~300 mm thick)	~197.7									
	SILTY CLAY: brown, moist, very stiff to hard	~197.4		Ö	200	×					
_		_	1	110	>225	×					
_			2	13	>225	×					
_		~195.1		8	185	×					
1 1 2	Borehole terminated at 2.7 m depth. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		3								

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	2.7

Haldimand County Proposed Cast Iron Watermain Replacement Various Streets in Caledonia, Cayuga and Hagersville, Ontario HAM-000801497-A0 November 23, 2018

Appendix B – Certificate of Analysis

	Soil μg/g		BH1 SS1	BH2 SS2	BH3 SS2	BH4 SS2	BH5 SS1B	BH6 SS1	BH7 SS1
Table 9 - Generic Non-		Detection Limit	9535708	9535710	9535711	9535712	9535713	9535714	9535715
Potable			Soil						
		μg/g	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18
Antimony	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18	1	2	5	4	5	2	5	5
Barium	220	2	16	61	74	32	41	161	204
Beryllium	2.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.3	1.7
Boron	36	5	<5	13	8	11	<5	19	13
Boron (Hot Water Soluble)	1.5	0.1	<0.10	0.14	0.42	0.14	0.24	0.22	0.32
Cadmium	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	70	2	5	14	12	11	16	32	40
Cobalt	22	0.5	1.7	7	6.3	4.3	7.2	16.2	18.7
Copper	92	1	5	29	16	16	10	25	31
Lead	120	1	4	13	17	11	9	13	25
Molybdenum	2	0.5	<0.5	<0.5	0.8	1.1	<0.5	<0.5	<0.5
Nickel	82	1	3	14	12	10	13	34	40
Selenium	1.5	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.4
Silver	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	2.5	0.5	<0.5	0.5	0.7	0.8	<0.5	0.6	0.6
Vanadium	86	1	10	21	21	18	28	44	52
Zinc	290	5	19	54	45	32	39	74	98
Chromium VI	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	0.051	0.04	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	0.27	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	0.7	0.005	0.121	0.368	0.719	0.67	0.729	1.62	0.624
Sodium Adsorption Ratio	5	NA	1.33	4.48	2.8	9.99	13.8	4.64	1.42
pH, 2:1 CaCl2 Extraction	NV	NA	7.58	7.8	7.79	7.98	7.49	7.75	7.51

	Soil μg/g		BH8 SS1	BH9 SS1	BH10 SS1	BH11 SS2	BH12 SS1
Table 9 - Generic Non-		Detection Limit	9535716	9535717	9535718	9535719	9535730
Potable			Soil	Soil	Soil	Soil	Soil
		μg/g	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18
Antimony	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18	1	1	5	8	4	4
Barium	220	2	20	219	164	147	128
Beryllium	2.5	0.5	<0.5	1.9	1.7	1.1	0.8
Boron	36	5	<5	11	8	14	13
Boron (Hot Water Soluble)	1.5	0.1	0.13	0.35	0.12	0.34	0.46
Cadmium	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	70	2	7	41	36	32	22
Cobalt	22	0.5	2.1	21.6	21.8	16.5	9.9
Copper	92	1	5	33	40	24	19
Lead	120	1	5	21	15	35	25
Molybdenum	2	0.5	<0.5	<0.5	<0.5	<0.5	0.6
Nickel	82	1	4	46	40	30	21
Selenium	1.5	0.4	<0.4	0.7	0.7	<0.4	<0.4
Silver	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	2.5	0.5	<0.5	0.6	0.7	0.6	0.9
Vanadium	86	1	16	51	45	42	31
Zinc	290	5	22	105	88	84	53
Chromium VI	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	0.051	0.04	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	0.27	0.1	<0.10	<0.10	<0.10	0.8	<0.10
Electrical Conductivity	0.7	0.005	0.218	0.677	1.6	0.632	0.771
Sodium Adsorption Ratio	5	NA	2.46	4.03	8.25	2.07	2.57
pH, 2:1 CaCl2 Extraction	NV	NA	7.8	7.46	7.25	7.66	7.77

	Soil	μg/g		BH13 SS1	BH14 SS2
Table 7 - Shallow Soils Non-	Danisla satial	to decaded at	Detection Limit	9535720	9535721
Potable	Residential	Industrial		Soil	Soil
			μg/g	6-Sep-18	6-Sep-18
Antimony	7.5	(50) 40	0.8	<0.8	<0.8
Arsenic	18	18	1	5	4
Barium	390	670	2	119	114
Beryllium	(5) 4	(10) 8	0.5	1	0.7
Boron	120	120	5	11	13
Boron (Hot Water Soluble)	1.5	2	0.1	1.18	0.14
Cadmium	1.2	1.9	0.5	<0.5	<0.5
Chromium	160	160	2	27	23
Cobalt	22	(100) 80	0.5	11.3	10.7
Copper	(180) 140	(300) 230	1	24	19
Lead	120	120	1	62	10
Molybdenum	6.9	40	0.5	<0.5	<0.5
Nickel	(130) 100	(340) 270	1	23	22
Selenium	2.4	5.5	0.4	0.7	<0.4
Silver	(25) 20	(50) 40	0.2	<0.2	<0.2
Thallium	1	3.3	0.4	<0.4	<0.4
Uranium	23	33	0.5	0.7	0.6
Vanadium	86	86	1	37	32
Zinc	340	340	5	149	49
Chromium VI	(10) 8	(10) 8	0.2	<0.2	<0.2
Cyanide	0.051	0.051	0.04	<0.040	<0.040
Mercury	(1.8) 0.27	(20) 3.9	0.1	0.12	<0.10
Electrical Conductivity	0.7	1.4	0.005	3.46	0.521
Sodium Adsorption Ratio	5	12	NA	16.3	3.16
pH, 2:1 CaCl2 Extraction	NV	NV	NA	7.38	7.95

	Soil	μg/g		BH15 SS2	BH16 SS4	BH17 SS2	BH18 SS2	BH19 SS2	BH20 SS1
Table 3 - Full Depth Non-	Danisla atial	la di catalal	Detection Limit	9535722	9535723	9535724	9535725	9535726	9535727
Potable	Residential	Industrial		Soil	Soil	Soil	Soil	Soil	Soil
			μg/g	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18	6-Sep-18
Antimony	7.5	(50) 40	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18	18	1	4	4	3	4	10	5
Barium	390	670	2	121	153	57	31	83	121
Beryllium	(5) 4	(10) 8	0.5	1.2	1.2	0.7	<0.5	0.9	1
Boron	120	120	5	7	7	5	16	19	14
Boron (Hot Water Soluble)	1.5	2	0.1	0.58	0.93	0.29	<0.10	0.45	0.94
Cadmium	1.2	1.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	160	160	2	29	30	19	15	25	26
Cobalt	22	(100) 80	0.5	16.7	17.8	9.7	5.7	13	13.1
Copper	(180) 140	(300) 230	1	24	21	18	17	28	25
Lead	120	120	1	24	19	12	11	33	56
Molybdenum	6.9	40	0.5	0.5	<0.5	<0.5	0.9	2.4	1.1
Nickel	(130) 100	(340) 270	1	27	30	18	14	27	27
Selenium	2.4	5.5	0.4	0.5	0.7	<0.4	<0.4	<0.4	0.5
Silver	(25) 20	(50) 40	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	1	3.3	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	23	33	0.5	0.7	0.6	<0.5	1	0.8	0.9
Vanadium	86	86	1	38	38	28	26	44	32
Zinc	340	340	5	88	98	53	38	65	107
Chromium VI	(10) 8	(10) 8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	0.051	0.051	0.04	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	(1.8) 0.27	(20) 3.9	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	0.7	1.4	0.005	0.922	0.82	0.596	0.414	2.73	3
Sodium Adsorption Ratio	5	12	NA	0.87	0.416	1.85	8.74	43.1	33.9
pH, 2:1 CaCl2 Extraction	NV	NV	NA	7.01	6.75	7.11	7.73	7.89	7.61

	Soil	μg/g		BH21 SS2	BH22 SS1
Table 3 - Full Depth Non-	5 .1		Detection Limit	9535728	9535729
Potable	Residential	Industrial		Soil	Soil
			μg/g	6-Sep-18	6-Sep-18
Antimony	7.5	(50) 40	0.8	<0.8	<0.8
Arsenic	18	18	1	5	5
Barium	390	670	2	134	137
Beryllium	(5) 4	(10) 8	0.5	1.3	1.4
Boron	120	120	5	11	15
Boron (Hot Water Soluble)	1.5	2	0.1	0.37	0.15
Cadmium	1.2	1.9	0.5	<0.5	<0.5
Chromium	160	160	2	34	34
Cobalt	22	(100) 80	0.5	16.7	16.6
Copper	(180) 140	(300) 230	1	29	28
Lead	120	120	1	20	14
Molybdenum	6.9	40	0.5	<0.5	<0.5
Nickel	(130) 100	(340) 270	1	34	37
Selenium	2.4	5.5	0.4	0.5	<0.4
Silver	(25) 20	(50) 40	0.2	<0.2	<0.2
Thallium	1	3.3	0.4	<0.4	<0.4
Uranium	23	33	0.5	0.5	0.5
Vanadium	86	86	1	44	43
Zinc	340	340	5	89	82
Chromium VI	(10) 8	(10) 8	0.2	<0.2	<0.2
Cyanide	0.051	0.051	0.04	<0.040	<0.040
Mercury	(1.8) 0.27	(20) 3.9	0.1	<0.10	<0.10
Electrical Conductivity	0.7	1.4	0.005	3.64	1.36
Sodium Adsorption Ratio	5	12	NA	7.32	3.82
pH, 2:1 CaCl2 Extraction	NV	NV	NA	7.61	7.75

CLIENT NAME: EXP. SERVICES INC. 80 BANCROFT STREET HAMILTON, ON L8E2W5 (905) 573-4000

ATTENTION TO: Jeffrey Golder

PROJECT: HAM-801497-A0

AGAT WORK ORDER: 18T383508

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

DATE REPORTED: Sep 14, 2018

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

CLIENT NAME: EXP. SERVICES INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 18T383508

PROJECT: HAM-801497-A0

ATTENTION TO: Jeffrey Golder

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2018-09-10 DATE REPORTED: 2018-09-14 BH5 SS1B SAMPLE DESCRIPTION: BH1 SS1 BH2 SS2 BH3 SS2 BH4 SS2 BH6 SS1 BH7 SS1 BH8 SS1 **SAMPLE TYPE:** Soil Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2018-09-06 2018-09-06 2018-09-06 2018-09-06 2018-09-06 2018-09-06 2018-09-06 2018-09-06 **RDL** 9535708 9535710 9535711 9535712 9535713 9535714 9535715 9535716 Parameter Unit G/S 8.0 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 < 0.8 Antimony μg/g Arsenic 2 5 4 5 2 5 5 1 μg/g 74 41 204 2 16 61 32 161 20 Barium µg/g 0.5 < 0.5 < 0.5 < 0.5 <0.5 Beryllium < 0.5 1.3 1.7 < 0.5 μg/g Boron 5 <5 13 8 11 <5 19 13 <5 µg/g 0.42 0.32 Boron (Hot Water Soluble) 0.10 < 0.10 0.14 0.14 0.24 0.22 0.13 μg/g Cadmium 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.5 < 0.5 µg/g Chromium μg/g 2 5 14 12 11 16 32 40 7 Cobalt 0.5 1.7 7.0 6.3 4.3 7.2 16.2 18.7 2.1 μg/g 5 29 16 16 10 25 31 5 Copper μg/g 13 25 Lead μg/g 13 17 11 9 5 Molybdenum 0.5 < 0.5 < 0.5 8.0 < 0.5 < 0.5 < 0.5 < 0.5 μg/g 1.1 Nickel 14 12 34 40 3 10 13 4 μg/g 0.4 < 0.4 < 0.4 0.4 Selenium μg/g < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 Silver 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <0.2 < 0.2 μg/g Thallium μg/g 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 <0.4 < 0.4 Uranium µg/g 0.5 < 0.5 0.5 0.7 0.8 < 0.5 0.6 0.6 < 0.5 Vanadium 10 21 21 18 28 44 52 16 μg/g 45 Zinc μg/g 5 19 54 32 39 74 98 22 Chromium VI 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <0.2 < 0.2 < 0.2 < 0.2 μg/g Cyanide μg/g 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 Mercury 0.10 < 0.10 < 0.10 <0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 μg/g **Electrical Conductivity** mS/cm 0.005 0.121 0.368 0.719 0.670 0.729 1.62 0.624 0.218 Sodium Adsorption Ratio NA NA 1.33 4.48 2.80 9.99 13.8 4.64 1.42 2.46 pH, 2:1 CaCl2 Extraction pH Units NA 7.58 7.80 7.79 7.98 7.49 7.75 7.51 7.80

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

CLIENT NAME: EXP. SERVICES INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 18T383508

PROJECT: HAM-801497-A0

ATTENTION TO: Jeffrey Golder

SAMPLED BY:

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2018-09-10								DATE REPORTI	ED: 2018-09-14	
Parameter	S <i>i</i> Unit	AMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	BH9 SS1 Soil 2018-09-06 9535717	BH10 SS1 Soil 2018-09-06 9535718	BH11 SS2 Soil 2018-09-06 9535719	BH13 SS1 Soil 2018-09-06 9535720	BH14 SS2 Soil 2018-09-06 9535721	BH15 SS2 Soil 2018-09-06 9535722	BH16 SS4 Soil 2018-09-06 9535723	BH17 SS2 Soil 2018-09-06 9535724
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	1	5	8	4	5	4	4	4	3
Barium	μg/g	2	219	164	147	119	114	121	153	57
Beryllium	μg/g	0.5	1.9	1.7	1.1	1.0	0.7	1.2	1.2	0.7
Boron	μg/g	5	11	8	14	11	13	7	7	5
Boron (Hot Water Soluble)	μg/g	0.10	0.35	0.12	0.34	1.18	0.14	0.58	0.93	0.29
Cadmium	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	2	41	36	32	27	23	29	30	19
Cobalt	μg/g	0.5	21.6	21.8	16.5	11.3	10.7	16.7	17.8	9.7
Copper	μg/g	1	33	40	24	24	19	24	21	18
Lead	μg/g	1	21	15	35	62	10	24	19	12
Molybdenum	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
Nickel	μg/g	1	46	40	30	23	22	27	30	18
Selenium	μg/g	0.4	0.7	0.7	<0.4	0.7	<0.4	0.5	0.7	<0.4
Silver	μg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/g	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	μg/g	0.5	0.6	0.7	0.6	0.7	0.6	0.7	0.6	<0.5
Vanadium	μg/g	1	51	45	42	37	32	38	38	28
Zinc	μg/g	5	105	88	84	149	49	88	98	53
Chromium VI	μg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	μg/g	0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040
Mercury	μg/g	0.10	<0.10	<0.10	0.80	0.12	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.005	0.677	1.60	0.632	3.46	0.521	0.922	0.820	0.596
Sodium Adsorption Ratio	NA	NA	4.03	8.25	2.07	16.3	3.16	0.870	0.416	1.85
pH, 2:1 CaCl2 Extraction	pH Units	NA	7.46	7.25	7.66	7.38	7.95	7.01	6.75	7.11

Certified By:

CLIENT NAME: EXP. SERVICES INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 18T383508

PROJECT: HAM-801497-A0

ATTENTION TO: Jeffrey Golder

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

			Or Rog. 100(ori, motai	o a mongan				
DATE RECEIVED: 2018-09-10							ı	DATE REPORTED	: 2018-09-14
Parameter	Unit	SAMPLE DESCRIPTIO SAMPLE TYP DATE SAMPLE G/S RDL	E: Soil	BH19 SS2 Soil 2018-09-06 9535726	BH20 SS1 Soil 2018-09-06 9535727	BH21 SS2 Soil 2018-09-06 9535728	BH22 SS1 Soil 2018-09-06 9535729	BH12 SS1 Soil 2018-09-06 9535730	
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	1	4	10	5	5	5	4	
Barium	μg/g	2	31	83	121	134	137	128	
Beryllium	μg/g	0.5	< 0.5	0.9	1.0	1.3	1.4	0.8	
Boron	μg/g	5	16	19	14	11	15	13	
Boron (Hot Water Soluble)	μg/g	0.10	<0.10	0.45	0.94	0.37	0.15	0.46	
Cadmium	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	2	15	25	26	34	34	22	
Cobalt	μg/g	0.5	5.7	13.0	13.1	16.7	16.6	9.9	
Copper	μg/g	1	17	28	25	29	28	19	
Lead	μg/g	1	11	33	56	20	14	25	
Molybdenum	μg/g	0.5	0.9	2.4	1.1	<0.5	<0.5	0.6	
Nickel	μg/g	1	14	27	27	34	37	21	
Selenium	μg/g	0.4	<0.4	<0.4	0.5	0.5	<0.4	<0.4	
Silver	μg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	μg/g	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Jranium	μg/g	0.5	1.0	8.0	0.9	0.5	0.5	0.9	
Vanadium	μg/g	1	26	44	32	44	43	31	
Zinc	μg/g	5	38	65	107	89	82	53	
Chromium VI	μg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide	μg/g	0.040		<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity	mS/cm	0.005		2.73	3.00	3.64	1.36	0.771	
Sodium Adsorption Ratio	NA	NA	8.74	43.1	33.9	7.32	3.82	2.57	
pH, 2:1 CaCl2 Extraction	pH Units	NA	7.73	7.89	7.61	7.61	7.75	7.77	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9535708-9535730 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

manjot Bhell & AMANDOT BHEA & CHEMIST & CHEMIS

Quality Assurance

CLIENT NAME: EXP. SERVICES INC.

PROJECT: HAM-801497-A0

SAMPLING SITE:

AGAT WORK ORDER: 18T383508 ATTENTION TO: Jeffrey Golder

SAMPLED BY:

			301	1 7110	alysis	•								
RPT Date: Sep 14, 2018		1	DUPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch Samp	le Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery		eptable mits
TANAMETER	ld ld	Dup#1	Dup #2	INI D		Value	Lower	Upper	Recovery	Lower	Upper	recovery	Lower	Uppe
O. Reg. 153(511) - Metals & In	organics (Soil)					•		•		•				
Antimony	9535708 953570	8.0>	<0.8	NA	< 0.8	97%	70%	130%	90%	80%	120%	88%	70%	130%
Arsenic	9535708 953570	8 2	2	NA	< 1	107%	70%	130%	87%	80%	120%	95%	70%	130%
Barium	9535708 953570	8 16	16	0.0%	< 2	99%	70%	130%	86%	80%	120%	104%	70%	130%
Beryllium	9535708 953570	8 <0.5	<0.5	NA	< 0.5	114%	70%	130%	110%	80%	120%	100%	70%	130%
Boron	9535708 953570	8 <5	<5	NA	< 5	87%	70%	130%	108%	80%	120%	102%	70%	130%
Boron (Hot Water Soluble)	9535708 953570	8 <0.10	<0.10	NA	< 0.10	117%	60%	140%	97%	70%	130%	94%	60%	140%
Cadmium	9535708 953570	8 <0.5	<0.5	NA	< 0.5	103%	70%	130%	96%	80%	120%	110%	70%	130%
Chromium	9535708 953570	8 5	6	NA	< 2	93%	70%	130%	94%	80%	120%	100%	70%	130%
Cobalt	9535708 953570	8 1.7	1.7	NA	< 0.5	97%	70%	130%	97%	80%	120%	100%	70%	130%
Copper	9535708 953570	8 5	5	0.0%	< 1	94%	70%	130%	104%	80%	120%	97%	70%	130%
Lead	9535708 953570	8 4	4	NA	< 1	105%	70%	130%	96%	80%	120%	95%	70%	130%
Molybdenum	9535708 953570	8 <0.5	<0.5	NA	< 0.5	99%	70%	130%	104%	80%	120%	114%	70%	130%
Nickel	9535708 953570	3	4	NA	< 1	97%	70%	130%	96%	80%	120%	96%	70%	130%
Selenium	9535708 953570	8 <0.4	< 0.4	NA	< 0.4	104%	70%	130%	89%	80%	120%	100%	70%	130%
Silver	9535708 953570	8 <0.2	<0.2	NA	< 0.2	106%	70%	130%	96%	80%	120%	105%	70%	130%
Thallium	9535708 953570	8 <0.4	<0.4	NA	< 0.4	101%	70%	130%	91%	80%	120%	93%	70%	130%
Uranium	9535708 953570		<0.5	NA	< 0.5	102%	70%	130%	104%	80%	120%	100%	70%	130%
Vanadium	9535708 953570	8 10	10	0.0%	< 1	93%	70%	130%	92%	80%	120%	98%	70%	130%
Zinc	9535708 953570	8 19	18	NA	< 5	98%	70%	130%	104%	80%	120%	107%	70%	130%
Chromium VI	9535724 953572	4 <0.2	<0.2	NA	< 0.2	75%	70%	130%	90%	80%	120%	79%	70%	130%
Cyanide	9535708 953570	8 <0.040	<0.040	NA	< 0.040	108%	70%	130%	109%	80%	120%	95%	70%	130%
Mercury	9535708 953570	8 <0.10	<0.10	NA	< 0.10	94%	70%	130%	92%	80%	120%	87%	70%	130%
Electrical Conductivity	9535708 953570	8 0.121	0.122	0.8%	< 0.005	94%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9535708 953570	8 1.33	1.34	0.7%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	9535724 953572	4 7.11	7.18	1.0%	NA	101%	80%	120%	NA			NA		
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	9536158	<0.8	<0.8	NA	< 0.8	111%	70%	130%	97%	80%	120%	79%	70%	130%
Arsenic	9536158	7	7	0.0%	< 1	108%	70%	130%	96%	80%	120%	98%	70%	130%
Barium	9536158	87	92	5.6%	< 2	99%	70%	130%	89%	80%	120%	91%	70%	130%
Beryllium	9536158	1.0	0.9	NA	< 0.5	116%	70%	130%	112%	80%	120%	111%	70%	130%
Boron	9536158	15	16	NA	< 5	87%	70%	130%	107%	80%	120%	106%	70%	130%
Boron (Hot Water Soluble)	9536158	0.90	0.91	1.1%	< 0.10	113%	60%	140%	96%	70%	130%	100%	60%	140%
Cadmium	9536158	<0.5	<0.5	NA	< 0.5	103%		130%	99%	80%	120%	100%	70%	130%
Chromium	9536158	29	31	6.7%	< 2	92%	70%	130%	96%	80%	120%	106%	70%	130%
Cobalt	9536158	13.9	14.3	2.8%	< 0.5	99%	70%	130%	99%	80%	120%	97%	70%	130%
Copper	9536158	121	124	2.4%	< 1	97%	70%	130%	105%	80%	120%	99%	70%	130%
Lead	9536158	10	10	0.0%	< 1	105%	70%	130%	98%	80%	120%	98%	70%	130%
Molybdenum	9536158	1.2	1.3	NA	< 0.5	106%		130%	108%	80%		105%	70%	130%
Nickel	9536158	28	29	3.5%	< 1	98%		130%	98%		120%	95%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: EXP. SERVICES INC.

PROJECT: HAM-801497-A0

AGAT WORK ORDER: 18T383508

ATTENTION TO: Jeffrey Golder

SAMPLING SITE: SAMPLED BY:

	Soil Analysis (Continued)													
RPT Date: Sep 14, 2018		Г	UPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank		Measured Lir	Acceptable Limits	Recovery	Acce Lir		Recovery	1 1 1 1	eptable mits
	la la					Value L		Upper	_	Lower	Upper		Lower	Upper
Selenium	9536158	<0.4	<0.4	NA	< 0.4	101%	70%	130%	92%	80%	120%	95%	70%	130%
Silver	9536158	<0.2	<0.2	NA	< 0.2	115%	70%	130%	100%	80%	120%	97%	70%	130%
Thallium	9536158	<0.4	<0.4	NA	< 0.4	95%	70%	130%	93%	80%	120%	95%	70%	130%
Uranium	9536158	0.8	8.0	NA	< 0.5	103%	70%	130%	105%	80%	120%	108%	70%	130%
Vanadium	9536158	29	31	6.7%	< 1	96%	70%	130%	93%	80%	120%	98%	70%	130%
Zinc	9536158	69	73	5.6%	< 5	98%	70%	130%	104%	80%	120%	109%	70%	130%
Chromium VI	9535722 9535722	<0.2	<0.2	NA	< 0.2	74%	70%	130%	97%	80%	120%	100%	70%	130%
Cyanide	9535729 9535729	< 0.040	< 0.040	NA	< 0.040	94%	70%	130%	108%	80%	120%	94%	70%	130%
Mercury	9536158	<0.10	<0.10	NA	< 0.10	97%	70%	130%	93%	80%	120%	96%	70%	130%
Electrical Conductivity	9536158	0.766	0.770	0.5%	< 0.005	94%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9536158	2.07	2.06	0.5%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	9534284	7.57	7.62	0.7%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

manyot Bhelis AMANJOT BHELA 9 OHEMIST 7

Certified By:

Method Summary

CLIENT NAME: EXP. SERVICES INC.

PROJECT: HAM-801497-A0

SAMPLING SITE:

AGAT WORK ORDER: 18T383508

ATTENTION TO: Jeffrey Golder

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712.5100 Fax: 905 712 5122 webearth.agatlabs.com

Laboratory Use Only Work Order #: 18T383508 Cooler Quantity:

Chain of C	ustody R	ecord	If this is a Dr	Inking Wate	r sample, please	use Drinking Water Chain of	Custody Form (po	otable	water int	tended	i for humar	consum	otion)		Arri	val Te	mpe	eratur	res:	7	9 ·	110	P 2	2 1	717	2
Report Information: Company: exp Services Inc.					Regulatory Requirements: No Regulatory Requirement (Please check ell applicable boxes)								Custody Seal Intact:						Yes	(□No)	_N	► √A		
Contact:	Jeffrey Golder			☐ Regulation 153/04 ☐ Sewer Use ☐ Regulation 558							15					=	=	=					Ξ			
Address:	80 Bancroft Stree	et		000	Date Megulation 226					Turnaround Time (TAT) Required:																
Phone: Reports to be sent to: 1. Email;	Hamilton, ON L8E 2W5					□Ind/Com □Res/Park □Storm □Res/Park □Storm					CCME					ular	TA.	т			5 *** *	7 0				
	905.573.4000 x5022 Fax:										vr Ouglit		111	_					√ 5 to 7 Business Days							
	jeffrey.golder@exp.com dilsher.bhangal@exp.com					Agriculture				Prov. Water Quality Objectives (PWQO) Other				Ш	KUS	n IA	, Ru	ush Sur	charge	arges Apply)						
						Soil Texture (Check One)	Region							3 Business					i	2 Business 1 Busine						s
						Coarse	indicate	E ONE			Ш		J D	ays			Days Day									
2. Email:		Giranos, oriente de controlle								Indicate One																
Project Inform	mation:					The Control of the Co	Is this submission for a Report Guldeline on					OR Date Required (Rush Surcharges May Apply):														
Project:	HAM 80	1447-	AD			Record of Site Co	ndition?		Cert	ifica	te of A	nalysis		Place would not to the state of												
Site Location:	Caledoni	a, Car	use. He	servell	, DN	☐ Yes ☑	No			Yes] No		Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holida												
Sampled By:	DB	, ,	0	0			Marian 23 S	nocen	co-ull	negru		OR I	101 777													
AGAT Quote #:	159061		P0:			Sample Matrix		W			1						_									_
	Please note: If quota	tion number is not	provided, client will be	billed full price fo	r analysis.	Legend	S C	18	18		(Chec	k Applica	ble)						₹.							
Invoice Infor	mation:		Bill	To Same: Y	′es ☑ No □	B Biota					000	-	THM		20											
Company:						GW Ground Water				NO NO NO	TKN	-				100				37			311			
Contact:	-					O Oil	Med Med		.	S			BTEX	_					ides	ပ္ပ					5	
Address:	-					P Paint S Soil	ed -	anic.	:	Met	HWS CC	HI ON		to 4	8				stic	gani		180				
Email:	:					SD Sediment	Her (F	90		l Bu	S I		VOC	ns 1					e Pe	no.	y-1	13	8		82	
Email.						SW Surface Water	Field Filtered - Metals, Hg. (Please Circle)	P P	Scan	orm orm	D B-H] _ <u>g</u>		actio			enol		lorir	als/	ap					
		Date	Time	# of	Sample	Comments/		Metals and Inorganics	S S	Hydride Forming Metals	ORPs: DB-HWS DC	Nutrients: TP I	Volatiles:	CCME Fractions 1	S	,,	Chlorophenols	6	Organochlorine Pesticides	TCLP Metals/Inorganics	Sewer Use			× 1	-8	
Sample Ide	entification	Sampled	Sampled	Containers	Matrix	Special Instructions	Y/N	Met	Metal	E S			Vola	CC	ABNs	PAHS	Chlo	PCBs	Orga	다 다	Sew					
BHI \$	SSI	614/19	4.30 Ph	, 1			11-16-2	1		2	1/27/		20.0		No.				77		W	19			Ų.	
BH 2	552	1	1										Iny		36		NAME OF TAXABLE PARTY.		10							
BM 2	SS 2							V		8			18		30										(8)	Г
BH 4	552							V							970						84			Ed.		
BM S	SCIB						Phillips	V		(10)			1		.77		N.									Г
Rus	cel						MI MU	سرا			1										0.0					
BH7	551						0.0	V			100	i i	311/4						8						E	Г
RU8	SSI						7.7	V		W)	in els		in.												18	
BH9	SSI						1000	V		91		2	W.		:::										100	Г
BH 10	SSI							V		81	The same								8	T						Г
BH 11	552	V	V	V				V	1						war				5							Г
Samples Relinquished By (Pri	int Name and Sign):	nl	10	Date	Time	Samples Received By (Pr	ht Name and Sign):	-		7	1	/	Date	_		Time		,		-					-	=
Dilsher Bhangal	Salah	18hay	,	B/ 4	18	Samples Received by IPF	للحر		2	181	091	10				1		13								
Samples Reinquished B) (Pri	int Name and Sign);	orto	9/10	Date	4	Samples Received By TP	nir Malle Suo Sign);						Date			Time	1			Page of						
Samples Relinquished By (Pri			10	Date	Time	Samples Received By (Pr	int Name and Sign)						Date			Time	,			Nº:						
															1											

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905,712.5100 Fax: 905.712,5122 webearth agatlabs.com

Laboratory Use	Only		
Work Order #:	T383	3508	
Cooler Quantity:	0		
Arrival Temperatures:	1.1	7.2	7.2
	8.1	18.2	8.2
Custody Seal Intact:	□Yes	□No	□N/A

Chain of C	Custody R	eco	rd	If this is a Dri	nking Watei	sample, please	use Drinking Water Chain of	Custody Form (po	otable v	vater int	ended	for human c	onsumpt	on)	. /	rrival	Temp	eratu	ires:	7	1.1	17	12	17	2
Report Information: Company: exp Services Inc.						Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes)												- 0	□N/A						
Contact:	Jeffrey Golder					[Portulation 153/04]								***************************************				=							
Address:	80 Bancroft Street					☑ Regulation 153/04 ☐ Sewer Use ☐ Regulation 558							Turnaround Time (TAT) Required:												
	Hamilton, ON L8E 2W5					Table Indicate One ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐							Regular TAT												
	905.573.4000 x5022 Fax:					Res/Park	Storm		Prov. Water Quality				Rush TAT (Rush surcharges Apply)												
Phone: Reports to be sent to:						Agriculture				Objectives (PWQO)					ısn	AI (Rush Sı	ırcharge	>s Apply	")					
1. Email:						Soil Texture (Check One)	Region	One	Other				Ш		3 Bu		s	2 Business 1 Bus					ness		
	dilsher.bhangal@	dilsher.bhangal@exp.com					Coarse	, tereate	0110						Ш	П	Days			□ Days □ Day					
2. Email:						Fine				indicate One															
Project Inform	mation:						Is this submission	n for a		Rep	ort (auldelin	e on		П		OR L	ate F	Requir	ed (Ru	ush Su	urcharg	es May /	Apply):	
Project:	HAM	anly	97-	AD			Record of Site Co	Record of Site Condition? Certificate of Analysis																	
Site Location:	Caledov		Cavi	MAA . Ha	cersuell	, DN	☐ Yes ☑ No ☐ Yes ☑ No						Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays												
Sampled By:	DB	· ·	- 1	0		7		Meliani sin				viilivii i	TV≌#S		"" To exclusive of mechanics and statutory nondays										
AGAT Quote #:	159061			P0:			Sample Matrix								3.77										
	Please note; If quota	tion numbe	r is not pro		oilled full price fo	r analysis.	Legend	S.	1115			(Check	Applicabl	e)					961						
Invoice Infor	motion:			Dill 3	Fa Carray N	es ☑ No □	B Biota	m			ē	20	12 2	Σ	19				-81		61	5.5			5
	mation.			BIII	io Same: Y	es 📶 140 🖂	GW Ground Water	ole)	3			OCN:	TKN	DTHM	18					1 17					81
Company:							O Oil P Paint	Mets Cir			S		Nutrients: TP DNH, D	\ <u>\\</u>	10				ges	S		7 8			3
Contact:	-			_				ered - Metals, (Please Circle)	SSI		eta als	돌등품		П втех	to 4				stici	anic		-			See 1
Address:	-						S Soil	(PI	Inorganics		Met	N L #		n II.	⊣	4	-		P P	org	4				Fig.
Email:		_					SD Sediment SW Surface Water	Field Filtered - Metals, Hg. (Please Circle)	1 E	ا ا	Ē E	F O D	og 🗖	□ voc	Ęį		Slot		jë	IS/I					3
							Sw Surface Water		and	Scal	Cust	DB-HWS DCF I	튟ㅁ	ģ	Fractions		phe		탕	Aeta	Use	1.5			
Sample Ide	entification	The second second	ate ipled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metal Scan	Hydride Forming Metals Client Custom Metals	ORPs: [Nutrie No.	Volatiles:	CCME	PAHS	Chlorophenols	PCBs	Organochlorine Pesticides	TCLP Metals/Inorganics	Sewer		la la		
BH13 SS	5	6/9	1/18	4-00PM	1				~			The second		3											
Rhih sc	2			1				87185	~	15		4515			ji.v								16		
RHIT CO	(2								1		2				JB.		6						1 6		
	C Li								~			1 3 Q		iisi									100		
131110 0	352	İ						LETELS	V					ì	18						ai -				
RHIA C	(2_								V	0.			21		18							T A			
RUIA	(62								V			8.0										ESV	100		8
RUZO	SSI								V	100									M				(a)		
BH 21	552								V		E.	ALS Y													
BH22	551			J.					V		1				15										
RH12	55	Y		Y	V				~						18										
Samples Relinquished By (Pr	rint Name and Sign):	11	1		Date	Time	Sample Received By (Pr	int Name and Sign);	22	15	10	9/1	D	ate		7	me	7;	7						
Dilsher Bhangal Sampjef perinculared By (Print Name and Sup) Date				Samples Received By (Pr	int Name and Sign):	1	101		(110	D	ate	Time													
1000	72 your	109	110				20 Samoies Received by IPF														Pag	e	of	-	
Amples Relinquished By (Pr	rint Name and Signic				Date	Time	Samples Received By (Pr	int Name and Sign):					Di	ate		T	me			Nº:					
					1						_			_	_		_								